Taken together, the results demonstrate that ScEO and its major constituent α-pinene have significant anti-Leishmania activity, modulated by macrophage activation, with acceptable levels of cytotoxicity in murine macrophages and human erythrocytes. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations.
Eugenia uniflora L. is a member of the Myrtaceae family and is commonly known as Brazilian cherry tree. In this study, we evaluated the chemical composition of Eugenia uniflora L. essential oil (EuEO) by using gas chromatography-mass spectrometry (GC-MS) and assessed its anti-Leishmania activity. We also explored the potential mechanisms of action and cytotoxicity of EuEO. Thirty-two compounds were identified, which constituted 92.65% of the total oil composition. The most abundant components were sesquiterpenes (91.92%), with curzerene (47.3%), γ-elemene (14.25%), and trans-β-elemenone (10.4%) being the major constituents. The bioactivity shown by EuEO against promastigotes (IC50, 3.04 μg·mL−1) and amastigotes (IC50, 1.92 μg·mL−1) suggested significant anti-Leishmania activity. In the cytotoxicity determination, EuEO was 20 times more toxic to amastigotes than to macrophages. Hemolytic activity was 63.22% at the highest concentration tested (400 μg·mL−1); however, there appeared to be no toxicity at 50 μg·mL−1. While the data show that EuEO activity is not mediated by nitric oxide production, they do suggest that macrophage activation may be involved in EuEO anti-Leishmania activity, as evidenced by increases in both the phagocytic capacity and the lysosomal activity. More studies are needed to determine in vivo activity as well as additional mechanisms of the anti-Leishmania activity.
The leishmaniases are severe parasitic diseases that occur worldwide, caused by protozoa of the genus Leishmania. Studies with medicinal plants can lead to a range of possibilities for treating and improving the patients' quality of life. Research on Azadirachta indica fractions and extracts has shown that they have excellent anti-leishmanial activity based on bioactivity-guided fractionation of ethanolic extracts of leaves and seeds and in vitro activity against promastigotes. In this research the most effi cient extracts and fractions were selected for tests on intracellular amastigotes of Leishmania amazonensis. The ethanolic extract of the leaves and dichloromethane and chloroform fractions had IC 50 values of 38, 3.9 and 1.2 μg/mL for promastigotes and 9.8, 1.1 and 0.6 μg/mL for amastigotes, respectively, at 72 hours. For the ethanolic extract and dichloromethane fraction from nut tegument, the IC 50 was 2.7 and 2.1 μg/mL for promastigotes and 0.4 and 0.6 μg/mL for amastigotes. The cytotoxicity of the fractions presented selectivity that was between 8 to 32 times more toxic to promastigotes and 15 to 72 times to amastigotes than to macrophages. The extracts and fractions from leaves and fruits were more eff ective against amastigotes, and the fractionation increased activity against both promastigotes and amastigotes, enabling us to obtain potentially active fractions with low toxicity.
The chemical composition and biological potential of the essential oil extracted from Syzygium cumini leaves collected in Brazil were examined. GC/MS Analyses revealed a high abundance of monoterpenes (87.12%) in the oil. Eleven compounds were identified, with the major components being α-pinene (31.85%), (Z)-β-ocimene (28.98%), and (E)-β-ocimene (11.71%). To evaluate the molluscicidal effect of the oil, it was tested against Biomphalaria glabrata and the LC₅₀ obtained was 90 mg/l. The essential oil also showed significant activity against Leishmania amazonensis, with an IC50 value equal to 60 mg/l. In addition, to evaluate its toxicity towards a non-target organism, the essential oil was tested against Artemia salina and showed a LC₅₀ of 175 mg/l. Thus, the essential oil of S. cumini showed promising activity as a molluscicidal and leishmanicidal agent and might be valuable in combating neglected tropical diseases such as schistosomiasis and leishmaniasis. Further research is being conducted with regard to the purification and isolation of the most active essential-oil compounds.
Leishmaniasis is a complex of parasitic protozoan diseases caused by more than 20 different species of parasites from Leishmania genus. Conventional treatments are high costly, and promote a sort of side effects. Besides, protozoan resistance to treatments has been reported. Natural products have been investigated as a source of new therapeutic alternatives, not only acting directly against the parasite but also being able to synergistically act on the host immune system in order to control parasitemia. Gallic acid (GA) and ellagic acid (EA) are plant-derived phenolic compounds which are able to induce antiinflammatory, gastroprotective, and anticarcinogenic activities. Therefore, the antileishmania, cytotoxic, and immunomodulatory activities of GA and EA were evaluated in this study. Both GA and EA were able to inhibit the growth of Leishmania major promastigotes (effective concentration (EC) values 16.4 and 9.8 μg/mL, respectively). The cytotoxicity against BALB/c murine macrophages for GA and EA was also assessed (CC values 126.6 and 23.8 μg/mL, respectively). Interestingly, GA and EA also significantly reduced the infection and infectivity of macrophages infected by L. major (EC values 5.0 and 0.9 μg/mL, respectively), with selectivity index higher than 20. Furthermore, both GA and EA induced high immunomodulatory activity evidenced by the increase of phagocytic capability, lysosomal volume, nitrite release, and intracellular calcium [Ca] in macrophages. Further investigations are reinforced in order to evaluate the therapeutic effects of GA and EA in in vivo experimental infection model of leishmaniasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.