Content caching in small base stations or wireless infostations is considered to be a suitable approach to improve the efficiency in wireless content delivery. Placing the optimal content into local caches is crucial due to storage limitations, but it requires knowledge about the content popularity distribution, which is often not available in advance. Moreover, local content popularity is subject to fluctuations since mobile users with different interests connect to the caching entity over time. Which content a user prefers may depend on the user's context. In this paper, we propose a novel algorithm for contextaware proactive caching. The algorithm learns context-specific content popularity online by regularly observing context information of connected users, updating the cache content and observing cache hits subsequently. We derive a sublinear regret bound, which characterizes the learning speed and proves that our algorithm converges to the optimal cache content placement strategy in terms of maximizing the number of cache hits. Furthermore, our algorithm supports service differentiation by allowing operators of caching entities to prioritize customer groups. Our numerical results confirm that our algorithm outperforms state-of-the-art algorithms in a real world data set, with an increase in the number of cache hits of at least 14%.
In mobile crowdsourcing (MCS), mobile users accomplish outsourced human intelligence tasks. MCS requires an appropriate task assignment strategy, since different workers may have different performance in terms of acceptance rate and quality. Task assignment is challenging, since a worker's performance (i) may fluctuate, depending on both the worker's current personal context and the task context, (ii) is not known a priori, but has to be learned over time. Moreover, learning context-specific worker performance requires access to context information, which may not be available at a central entity due to communication overhead or privacy concerns. Additionally, evaluating worker performance might require costly quality assessments. In this paper, we propose a context-aware hierarchical online learning algorithm addressing the problem of performance maximization in MCS. In our algorithm, a local controller (LC) in the mobile device of a worker regularly observes the worker's context, her/his decisions to accept or decline tasks and the quality in completing tasks. Based on these observations, the LC regularly estimates the worker's context-specific performance. The mobile crowdsourcing platform (MCSP) then selects workers based on performance estimates received from the LCs. This hierarchical approach enables the LCs to learn context-specific worker performance and it enables the MCSP to select suitable workers. In addition, our algorithm preserves worker context locally, and it keeps the number of required quality assessments low. We prove that our algorithm converges to the optimal task assignment strategy. Moreover, the algorithm outperforms simpler task assignment strategies in experiments based on synthetic and real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.