The small GTPase ARF1 is overexpressed in invasive breast cancer cells. This ARF isoform controls MMP-9 activity to degrade the extracellular matrix by regulating invadopodia maturation and microvesicle shedding. The molecular mechanisms by which ARF1 controls invasiveness involve regulation of the Rho/MLC pathway.
The ADP-ribosylation factors (ARFs) 1 and 6 are small GTP-binding proteins, highly expressed and activated in several breast cancer cell lines and are associated with enhanced migration and invasiveness. In this study, we report that ARF1 has a critical role in cell proliferation. Depletion of this GTPase or expression of a dominant negative form, which both resulted in diminished ARF1 activity, led to sustained cell-growth arrest. This cellular response was associated with the induction of senescent markers in highly invasive breast cancer cells as well as in control mammary epithelial cells by a mechanism regulating retinoblastoma protein (pRB) function. When examining the role of ARF1, we found that this GTPase was highly activated in normal proliferative conditions, and that a limited amount could be found in the nucleus, associated with the chromatin of MDA-MB-231 cells. However, when cells were arrested in the G 0 /G 1 phase or transfected with a dominant negative form of ARF1, the total level of activated ARF1 was markedly reduced and the GTPase significantly enriched in the chromatin. Using biochemical approaches, we demonstrated that the GDP-bound form of ARF1 directly interacted with pRB, but not other members of this family of proteins. In addition, depletion of ARF1 or expression of ARF1T 31 N resulted in the constitutive association of pRB and E2F1, thereby stabilizing the interaction of E2F1 as well as pRB at endogenous sites of target gene promoters, preventing expression of E2F target genes, such as cyclin D1, Mcm6 and E2F1, important for cell-cycle progression. These novel findings provide direct physiological and molecular evidence for the role of ARF1 in controlling cell proliferation, dependent on its ability to regulate pRB/E2F1 activity and gene expression for enhanced proliferation and breast cancer progression.
The clinical use of EGFR-targeted therapy, in triple negative breast cancer patients, has been limited by the development of resistance to these drugs. Although activated signaling molecules contribute to this process, the molecular mechanisms remain relatively unknown. We have previously reported that the small GTPase ADPRibosylation Factor 1 (ARF1) is highly expressed in invasive breast cancer cells and acts as a molecular switch to activate EGF-mediated responses. In this study, we aimed at defining whether the high expression of ARF1 limits sensitivity of these tumor cells to EGFR inhibitors, such as gefitinib. Here, we show that the knock down of ARF1 expression or activity decreased the dose and latency time required by tyrosine kinase inhibitors to induce cell death. This may be explained by the observation that the depletion of ARF1 suppressed gefitinib-mediated activation of key mediators of survival such as ERK1/2, AKT and Src, while enhancing cascades leading to apoptosis such as the p38MAPK and JNK pathways, modifying the Bax/Bcl2 ratio and cytochrome c release. In addition, inhibiting ARF1 expression and activation also results in an increase in gefitinib-mediated EGFR internalization and degradation further limiting the ability of this receptor to promote its effects. Interestingly, we observed that gefitinib treatment resulted in the enhanced activation of ARF1 by promoting its recruitment to the receptor AXL, an important mediator of EGFR inhibition suggesting that ARF1 may promote its pro-survival effects by coupling to alternative mitogenic receptors in conditions where the EGFR is inhibited. Together our results uncover a new role for ARF1 in mediating the sensitivity to EGFR inhibition and thus suggest that limiting the activation of this GTPase could improve the therapeutic efficacy of EGFR inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.