Many plant water use models predict leaves maximize carbon assimilation while minimizing water loss via transpiration. Alternate scenarios may occur at high temperature, including heat avoidance, where leaves increase water loss to evaporatively cool regardless of carbon uptake; or heat failure, where leaves non‐adaptively lose water also regardless of carbon uptake. We hypothesized that these alternative scenarios are common in species exposed to hot environments, with heat avoidance more common in species with high construction cost leaves. Diurnal measurements of leaf temperature and gas exchange for 11 Sonoran Desert species revealed that 37% of these species increased transpiration in the absence of increased carbon uptake. High leaf mass per area partially predicted this behaviour (r2 = 0.39). These data are consistent with heat avoidance and heat failure, but failure is less likely given the ecological dominance of the focal species. These behaviours are not yet captured in any extant plant water use model.
Herbivory can impact gas exchange, but the causes of interspecific variation in response remain poorly understood. We aimed to determine (1) what effects does experimental herbivory damage to leaf midveins have on leaf gas exchange and, (2) whether changes in leaf gas exchange after damage was predicted by leaf mechanical or venation traits. We hypothesized that herbivory-driven impacts on leaf gas exchange would be mediated by (1a/1b) venation networks, either by more vein resistance, or possibly trading off with other structural defenses; (2a/2b) or more reticulation (resilience, providing more alternate flow pathways after damage) or less reticulation (sectoriality, preventing spread of reduced functionality after damage). We simulated herbivory by damaging the midveins of four leaves from each of nine Sonoran Desert species. We then measured the percent change in photosynthesis (ΔAn%), transpiration (ΔEt%) and stomatal conductance (Δgsw%) between treated and control leaves. We assessed the relationship of each with leaf venation traits and other mechanical traits. ΔAn% varied between +10% and -55%, similar to ΔEt% (+27%, -54%) and Δgsw% (+36%, -53%). There was no tradeoff between venation and other structural defenses. Increased damage resilience (reduced ΔAn%, ΔEt%, Δgsw%) was marginally associated with lower force-to-tear (P<0.05), and higher minor vein density (P<0.10) but not major vein density or reticulation. Leaf venation networks may thus partially mitigate the response of gas exchange to herbivory and other types of vein damage through either resistance or resilience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.