RNA editosomes selectively deaminate cytidines to uridines in plant organellar transcripts—mostly to restore protein functionality and consequently facilitate mitochondrial and chloroplast function. The RNA editosomal pentatricopeptide repeat proteins serve target RNA recognition, whereas the intensively studied DYW domain elicits catalysis. Here we present structures and functional data of a DYW domain in an inactive ground state and activated. DYW domains harbour a cytidine deaminase fold and a C-terminal DYW motif, with catalytic and structural zinc atoms, respectively. A conserved gating domain within the deaminase fold regulates the active site sterically and mechanistically in a process that we termed gated zinc shutter. Based on the structures, an autoinhibited ground state and its activation are cross-validated by RNA editing assays and differential scanning fluorimetry. We anticipate that, in vivo, the framework of an active plant RNA editosome triggers the release of DYW autoinhibition to ensure a controlled and coordinated cytidine deamination playing a key role in mitochondrial and chloroplast homeostasis.
C-to-U RNA editing sites in plant organelles show a strong bias for neighboring nucleotides. The nucleotide upstream of the target cytidine is typically C or U, whereas A and G are less common and rare, respectively. In pentatricopeptide repeat (PPR)-type RNA editing factors, the PPR domain specifically binds to the 5 0 sequence of target cytidines, whereas the DYW domain catalyzes the C-to-U deamination. We comprehensively analyzed the effects of neighboring nucleotides of the target cytidines using an Escherichia coli orthogonal system. Physcomitrium PPR56 efficiently edited target cytidines when the nucleotide upstream was U or C, whereas it barely edited when the position was G or the nucleotide downstream was C. This preference pattern, which corresponds well with the observed nucleotide bias for neighboring nucleotides in plant organelles, was altered when the DYW domain of OTP86 or DYW1 was adopted. The PPR56 chimeric proteins edited the target sites even when the À1 position was G. Our results suggest that the DYW domain possesses a distinct preference for the neighboring nucleotides of the target sites, thus contributing to target selection in addition to the existing selection determined by the PPR domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.