Regulation of oxidative stress and redox systems has important roles in carcinogenesis and cancer progression, and for this reason has attracted much attention as a new area of cancer therapeutic targets. Glutathione peroxidase 4 (GPX4), an antioxidant enzyme, has biological important functions such as signaling cell death by suppressing peroxidation of membrane phospholipids. However, few studies exist on the expression and clinical relevance of GPX4 in malignant lymphomas such as diffuse large B-cell lymphoma. In this study, we assessed the expression of GPX4 immunohistochemically. GPX4 was expressed in 35.5% (33/93) cases of diffuse large B-cell lymphoma. The GPX4-positive group had poor overall survival (P = 0.0032) and progression-free survival (P = 0.0004) compared with those of the GPX4-negative group. In a combined analysis of GPX4 and 8-hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, there was a negative correlation between GPX4 and 8-hydroxydeoxyguanosine (P = 0.0009). The GPX4-positive and 8-hydroxydeoxyguanosine-negative groups had a significantly worse prognosis than the other groups in both overall survival (P = 0.0170) and progression-free survival (P = 0.0005). These results suggest that the overexpression of GPX4 is an independent prognostic predictor in diffuse large B-cell lymphoma. Furthermore, in vitro analysis demonstrated that GPX4-overexpressing cells were resistant to reactive oxygen species-induced cell death (P = 0.0360). Conversely, GPX4-knockdown cells were sensitive to reactive oxygen species-induced cell death (P = 0.0111). From these data, we conclude that GPX4 regulates reactive oxygen species-induced cell death. Our results suggest a novel therapeutic strategy using the mechanism of ferroptosis, as well as a novel prognostic predictor of diffuse large B-cell lymphoma.
Cytokine signaling is critical for proliferation, survival and differentiation of hematopoietic cell, and interleukin-3 (IL-3) is required for maintenance of many hematopoietic cell lines, such as BaF3. We have isolated apoptosis-resistant clones of BaF3 using retroviral insertional mutagenesis and the Xbp1 locus was identified as a retroviral integration site. Expression and splicing of the Xbp1 transcript was conserved in the resistant clone but was promptly disappeared on IL-3 withdrawal in parental BaF3. IL-3 stimulation of BaF3 cells enhanced Xbp1 promoter activity and induced phosphorylation of the endoplasmic reticulum stress sensor protein IRE1, resulting in the increase in Xbp1S that activates unfolded protein response. When downstream signaling from IL-3 was blocked by LY294002 and/or dn-Stat5, Xbp1 expression was downregulated and IRE1 phosphorylation was suppressed. Inhibition of IL-3 signaling as well as knockdown of Xbp1-induced apoptosis in BaF3 cells. In contrast, constitutive expression of Xbp1S protected BaF3 from apoptosis during IL-3 depletion. However, cell cycle arrest at the G1 stage was observed in BaF3 and myeloid differentiation was induced in IL-3-dependent 32Dcl3 cells. Expression of apoptosis-, cell cycle- and differentiation-related genes was modulated by Xbp1S expression. These results indicate that the proper transcriptional and splicing regulation of Xbp1 by IL-3 signaling is important in homeostasis of hematopoietic cells.
Photodegradation processes of carbocyanine dyes spin-coated on a polycarbonate plate were studied by steadystate photolysis and near-IR emission spectroscopy. The efficiency of the whole photodegradation caused by molecular oxygen directly and/or indirectly was found to strongly depend on both substituents on the 1 and 1′ positions and the counterion. Singlet molecular oxygen ( 1 ∆g) produced at the interface between the dye thin film and a polycarbonate plate was detected by near-IR emission spectroscopy. Its yield did not depend on substituents on the 1 and 1′ positions but on the counterion. The relative reactivity of carbocyanine dyes in the film state with the singlet molecular oxygen was estimated by exploiting a perinaphthenone thin film as a singlet molecular oxygen generator. The reactivity strongly depended on both substituents on the 1 and 1′ positions and the counterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.