The C-F...M(+) interaction was investigated by observation of the NMR spectroscopic changes and complexation studies between metal cations and the cage compounds 1 and 2 which have fluorobenzene units as donor atoms. As a result, the interaction was detected with all of the metal cations which form complexes with 1 and 2. The stability of the complexes of 1 and 2 was determined by the properties of the metal cations (ionic radii and degree of hydrolysis), not by the hard-soft nature of the cations. Crystallographic analyses of Tl(+) subset 1 and La(3+) subset 2 provided structural information (interatomic distances and bond angles), and the bond strengths, C-F...M(+), O...M(+), and N...M(+), were estimated by Brown's equation based on the structural data. Short C-F...Tl(+) (2.952-3.048 A) distances were observed in the complex Tl(+) subset 1. The C-F bond lengths in the complexes, Tl(+) subset 1 and La(3+) subset 2, are elongated compared to those of the metal-free compounds. Interestingly, no solvent molecules including water molecules were coordinated to La(3+) in the La(3+) subset 2. The stabilization energy of cation-dipole interaction was calculated on the basis of the data from X-ray crystallographic analysis, and it is roughly consistent with the (-)Delta H values estimated in solution. Thus, the C-F...M(+) interaction can be expressed by the cation-dipole interaction. This result explains the fact that compound 1 which has fluorine atom as hard donor strongly binds soft metals such as Ag(+) and Tl(+). Furthermore, it was concluded that the fluorobenzene unit has a poor electron-donating ability compared to that of ether oxygen or amine nitrogen, and thus the ratio of the coordination bond in C-F...M(+) is small. The specific and remarkable changes in the (1)H, (13)C, and (19)F NMR spectra were observed accompanied by the complexation between M(+) and the hosts 1 and 2. These spectral features are important tools for the investigation of the C-F...M(+) interaction. Furthermore, F.Tl(+) spin couplings were observed at room temperature in the Tl(+) subset 1, 2 (J(F-Tl) = 2914 Hz for Tl(+) subset 1 and 4558 Hz for Tl(+) subset 2), and these are clear and definitive evidence of the interaction.
The C-F.M(+) interaction was investigated by employing a cage compound 1 that has four fluorobenzene units. The NMR ((1)H, (13)C, and (19)F) spectra and X-ray crystallographic analyses of 1 and its metal complexes showed clear evidence of the interaction. Short C-F.M(+) distances (C-F.K(+), 2.755 and 2.727 A; C-F.Cs(+), 2.944 and 2.954 A) were observed in the crystalline state of K(+) subset 1 and Cs(+) subset 1. Furthermore, the C-F bond lengths were elongated by the interaction with the metal cations. By calculating Brown's bond valence, it is shown that the contribution of the C-F unit to cation binding is comparable or greater than the ether oxygen in the crystalline state. Representative spectroscopic changes implying the C-F.M(+) interaction were observed in the NMR ((1)H, (13)C, and (19)F) spectra. In particular, (133)Cs-(19)F spin coupling (J = 54.9 Hz) was observed in the Cs(+) complex.
An ammonium complex of the hexafluoro cage compound 1 was isolated and its structure was elucidated by X-ray crystallographic analysis. The C À F bonds are elongated by the complexation, which is clear evidence of CÀF´´´cation interaction. The driving force of NH 4 inclusion is the CÀF´´ć ation interaction, but the CÀF´´´HN hydrogen bond does not contribute to this complexation. The crystal structure of the NH 4 & 1 shows short CÀF´´´HN contacts (2.286 ± 2.662 ). Furthermore, it shows that closer F´´´H (ÀN) distances give a larger F´´´H ÀN angle. Although such structural features seem to indicate the existence of C À F´´´HN hydrogen bonds, the spectral data ( 1 H NMR, 19 F VT-NMR, and IR spectroscopy) did not support the existence of hydrogen bonds. Thermodynamic parameters, log K s (4.6 AE 0.1, 298 K), DH (À 5.3 AE 0.1 kcal mol À1 ), and DS (3.2 AE 0.3 cal mol À1 K À1 ), of the complexation were obtained in CDCl 3 /CD 3 CN mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.