Recent studies have revealed various functions for the small ubiquitin-related modifier (SUMO) in diverse biological phenomena, such as regulation of cell division, DNA repair and transcription, in yeast and animals. In contrast, only a limited number of proteins have been characterized in plants, although plant SUMO proteins are involved in many physiological processes, such as stress responses, regulation of flowering time and defense reactions to pathogen attack. Here, we reconstituted the Arabidopsis thaliana SUMOylation cascade in Escherichia coli. This system is rapid and effective for the evaluation of the SUMOylation of potential SUMO target proteins. We tested the ability of this system to conjugate the Arabidopsis SUMO isoforms, AtSUMO1, 2, 3 and 5, to a model substrate, AtMYB30, which is an Arabidopsis transcription factor. All four SUMO isoforms tested were able to SUMOylate AtMYB30. Furthermore, SUMOylation sites of AtMYB30 were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by mutational analysis in combination with this system. Using this reconstituted SUMOylation system, comparisons of SUMOylation patterns among SUMO isoforms can be made, and will provide insights into the SUMO isoform specificity of target modification. The identification of SUMOylation sites enables us to investigate the direct effects of SUMOylation using SUMOylation-defective mutants. This system will be a powerful tool for elucidation of the role of SUMOylation and of the biochemical and structural features of SUMOylated proteins in plants.
The haploid liverwort Marchantia polymorpha has heteromorphic sex chromosomes, an X chromosome in the female and a Y chromosome in the male. We here report on the repetitive structure of the liverwort Y chromosome through the analysis of male-specific P1-derived artificial chromosome (PAC) clones, pMM4G7 and pMM23-130F12. Several chromosome-specific sequence elements of Ϸ70 to 400 nt are combined into larger arrangements, which in turn are assembled into extensive Y chromosome-specific stretches. These repeat sequences contribute 2-3 Mb to the Y chromosome based on the observations of three different approaches: fluorescence in situ hybridization, dot blot hybridization, and the frequency of clones containing the repeat sequences in the genomic library. A novel Y chromosome-specific gene family was found embedded among these repeat sequences. This gene family encodes a putative protein with a RING finger motif and is expressed specifically in male sexual organs. To our knowledge, there have been no other reports for an active Y chromosome-specific gene in plants. The chromosome-specific repeat sequences possibly contribute to determining the identity of the Y chromosome in M. polymorpha as well as to maintaining genes required for male functions, as in mammals such as human.dioecism ͉ sex chromosome ͉ FISH ͉ RING finger motif ͉ convergent evolution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.