This paper describes a system that gives a mobile robot the ability to perform automatic speech recognition with simultaneous speakers. A microphone array is used along with a real-time implementation of Geometric Source Separation and a post-filter that gives a further reduction of interference from other sources. The post-filter is also used to estimate the reliability of spectral features and compute a missing feature mask. The mask is used in a missing feature theory-based speech recognition system to recognize the speech from simultaneous Japanese speakers in the context of a humanoid robot. Recognition rates are presented for three simultaneous speakers located at 2 meters from the robot. The system was evaluated on a 200-word vocabulary at different azimuths between sources, ranging from 10 to 90 degrees. Compared to the use of the microphone array source separation alone, we demonstrate an average reduction in relative recognition error rate of 24% with the post-filter and of 42% when the missing features approach is combined with the post-filter. We demonstrate the effectiveness of our multi-source microphone array post-filter and the improvement it provides when used in conjunction with the missing features theory.
This paper presents a robot audition system that recognizes simultaneous speech in the real world by using robotembedded microphones. We have previously reported Missing Feature Theory (MFT) based integration of Sound Source Separation (SSS) and Automatic Speech Recognition (ASR) for building robust robot audition. We demonstrated that a MFTbased prototype system drastically improved the performance of speech recognition even when three speakers talked to a robot simultaneously. However, the prototype system had three problems; being offline, hand-tuning of system parameters, and failure in Voice Activity Detection (VAD). To attain online processing, we introduced FlowDesigner-based architecture to integrate sound source localization (SSL), SSS and ASR. This architecture brings fast processing and easy implementation because it provides a simple framework of shared-object-based integration. To optimize the parameters, we developed Genetic Algorithm (GA) based parameter optimization, because it is difficult to build an analytical optimization model for mutually dependent system parameters. To improve VAD, we integrated new VAD based on a power spectrum and location of a sound source into the system, since conventional VAD relying only on power often fails due to low signal-to-noise ratio of simultaneous speech. We, then, constructed a robot audition system for Honda ASIMO. As a result, we showed that the system worked online and fast, and had a better performance in robustness and accuracy through experiments on recognition of simultaneous speech in a noisy and echoic environment.
A humanoid robot under real-world environments usually hears mixtures of sounds, and thus three capabilities are essential for robot audition; sound source localization, separation, and recognition of separated sounds. While the first two are frequently addressed, the last one has not been studied so much. We present a system that gives a humanoid robot the ability to localize, separate and recognize simultaneous sound sources. A microphone array is used along with a real-time dedicated implementation of Geometric Source Separation (GSS) and a multi-channel postfilter that gives us a further reduction of interferences from other sources. An automatic speech recognizer (ASR) based on the Missing Feature Theory (MFT) recognizes separated sounds in real-time by generating missing feature masks automatically from the post-filtering step. The main advantage of this approach for humanoid robots resides in the fact that the ASR with a clean acoustic model can adapt the distortion of separated sound by consulting the post-filter feature masks. Recognition rates are presented for three simultaneous speakers located at 2m from the robot. Use of both the post-filter and the missing feature mask results in an average reduction in error rate of 42% (relative).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.