In the present paper, the theoretical investigation of the device structure ITO/CeO2/SnS/Spiro-OMeTAD/Mo of SnS-based solar cell has been performed. The aim of this work is to examine how the Spiro-OMeTAD HTL affects the performance of SnS-based heterostructure solar cell. Using SCAPS-1D simulation software, various parameters of SnS-based solar cell such as work function, series and shunt resistance and working temperature have been investigated. With the help of Spiro-OMeTAD, the suggested cell’s open-circuit voltage was increased to 344 mV. The use of Spiro-OMeTAD HTL in the SnS-based solar cell resulted in 14% efficiency increase, and the proposed heterojunction solar cell has 25.65% efficiency. The cell’s performance is determined by the carrier density and width of the CeO2 ETL (electron transport layer), SnS absorber layer and Spiro-OMeTAD HTL (hole transport layer). These data reveal that the Spiro-OMeTAD solar cells could have been a good HTL (hole transport layer) in regards to producing SnS-based heterojunction solar cell with high efficiency and reduced cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.