BackgroundObesity is one of the main causes of morbidity and mortality worldwide. More than 120 genes have been shown to be associated with obesity related phenotypes. The aim of this study was to determine the effect of selected genetic polymorphisms in Uncoupling protein 1 (UCP1) and Niemann-Pick C1 (NPC1) genes in an obese population in Saudi Arabia.MethodsThe genotypes of rs1800592, rs10011540 and rs3811791 (UCP1 gene) and rs1805081 and rs1805082 (NPC1 gene) were determined in a total of 492 subjects using TaqMan chemistry by Real-time PCR. In addition, capillary sequencing assay was performed to identify two specific polymorphisms viz., rs45539933 (exon 2) and rs2270565 (exon 5) of UCP1 gene.ResultsA significant association of UCP1 polymorphisms rs1800592 [OR, 1.52 (1.10–2.08); p = 0.009] was observed in the obese cohort after adjusting with age, sex and type 2 diabetes. Further BMI based stratification revealed that this association was inconsistent with both moderate and extreme obese cohort. A significant association of UCP1 polymorphisms rs3811791 was observed only in the moderate-obese cohort [OR = 2.89 (1.33–6.25); p = 0.007] but not in the extreme-obese cohort indicating an overlying genetic complexity between moderate-obesity and extreme-obesity. The risk allele frequencies, which were higher in moderate-obese cohort, had abnormal HDL, LDL and triglyceride levels.ConclusionThe rs1800592 and rs3811791 of UCP1 gene are associated with obesity in general and in the moderate-obese group in particular. The associated UCP1 polymorphisms in the moderate-obese group may regulate the impaired energy metabolism which plays a significant role in the initial stages of obesity.Electronic supplementary materialThe online version of this article (10.1186/s12881-018-0715-5) contains supplementary material, which is available to authorized users.
Epidemiological studies indicate that the higher intake of fruits and vegetables may reduce the risks of many degenrative diseases like cancer, cardiovascular disease, cataract etc. This is attributed mainly to the intake of dietary polyphenols as seen in Mediterranean diets. However, the bioavailability of polyphenols is reported to be low due to poor absorption in the gut, intestine and colon and depends on the type of compounds, chemical structure, food matrix, extent of conjugation and individual colon microflora. In general, flavonoids, aglycones and pure compounds are absorbed more when compared to the glycosides. Diversity in intestinal mocroflora also contributes to a great extent for the variation in absorption of polyphenols as seen in a few studies for the absorption of isoflavones. Among the polyphenols, isoflavones are known to be more bioavailable followed by phenolic acids, flavanols, flavanones, flavonols and lowest bioavailability was seen for anthocyanins and proanthocyanidins.Many human and animal studies have shown that dietary polyphenols reduce the cardiovascular diseases by inhibiting LDL oxidation, promoting vasodilation and by antiplatelet properties. However, the relationship between the level of polyphenols in plasma and their in vivo cardioprotective effects are poor. It is clear that more studies with improved methods are needed to understand the involvement of polyphenols in reducing the risks of degenerative diseases. In order to translate the in vitro results to in vivo, bioavailability of dietary polyphenols have to be increased significantly. One way to achieve this would be to study food preparation methods that can increase the bioavailability of these compounds through the use of different additives, cooking methods, enzymes and microorganisms. Microorganisms appear to play an important role in increasing the bioavailability of polyphenols by removing the conjugation and by breaking polyphenols into simpler absorbable phenols. We feel more bacteria and fungi should be used in food preparations such as yeasts for bread and wine making; lactic acid bacteria for fermenting idlies, dosas, curds; and Bacillus strains for soy fermentation products to increase bioavalability of polyphenols. Enzyme treated or microbial digested food may become the future of food industry. This article was written with a view to supplement Dr. R. B. Singh's life long ambition to prevent cardiovascular diseases through the use of diet and discuss the above points in greater detail.
Background: Recent studies have shown that ovariectomy-induced osteoporosis in rats can be reversed by infusion of osteoblasts cultured from mesenchymal stem cells (MSCs). This study compares the influence of MSCs, osteoblasts, and exosomes derived from osteoblasts for the treatment of osteoporosis. Methods: Osteoporosis was induced in 40 female Sprague Dawley rats by performing ovariectomy. After 12 weeks, bone marrow was harvested and MSCs separated from bone-marrow aspirate as described by Piao et al. After 15 days, autologous osteogenically differentiated cells from the MSCs were available. Exosomes were isolated from osteoblasts by modification of the technique described by Ge et al. MSCs and osteoblasts (10 6 cells in 0.5 mL normal saline) and exosomes (100 µg protein) were injected into the tail veins of the animals. Animals were euthanized after 12 weeks and femurs and lumbar spines dissected and analyzed using high-resolution peripheral quantitative computed tomography. Results: When compared to the control group, osteoblast-treated animals showed significant differences in all parameters compared, with P -values ranging between <0.002 and <0.0001. Comparison among osteoblasts, MSCs, and exosomes, showed that osteoblasts had positive and statistically significant new-bone formation. The comparison for the spine was similar to the distal femur for osteoblasts. Conclusion: This study showed robust positive bone-forming changes after osteoblast injection in the distal femur and the spine when compared to controls, MSCs, and exosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.