Background Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits. Results A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1 , HvCry2 , HvCO4 and HvPRR73 . Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate. Conclusions This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley . Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation. Electronic supplementary material The online version of this article (10.1186/s12870-019-1828-5) contains supplementary material, which is available to authorized users.
Fennel (Foeniculum vulgare Mill.) plant is a medicinal aromatic herb and belongs to Apiaceae family. It has a rich nutritional value and has many medicinal usages. Very limited information is available in the literature about fennel cultivation and production practices. Therefore, this study was carried out to evaluate the effect of planting date and plant spacing and their interactive effects on yield, yield components and growth of Fennel under irrigation. Three planting dates (Oct. 1st, Nov. 1st and Dec. 1st) and four plant spacings (10, 20, 30 and 40 cm with constant row width, 60 cm) were used. Fruit yield was significantly (p<0.05) influenced by plant spacing and planting date and their interaction. Early planting significantly increased the fruit yield combined with higher number of branches per plant, number of umbrella per plant, number of fruit per plant and plant height. The percentage of increases in Oct. 1st were 34.4 and 32.2% in fruit and biological yield respectively compared with Dec. 1st. Harvest index and thousand fruit weight was not significantly affected by planting date. Increase plant spacing to 30 cm led to more than 15% increase in fruit and biological yield. The early planting date with 30 cm plant spacing resulted in higher fruit (4136 kg ha(-1)) and biological yield (10,114 kg ha(-1)).
The accumulation of polyaromatic hydrocarbons in plants is considered one of the most serious threats faced by mankind because of their persistence in the environment and their carcinogenic and teratogenic effect on human health. The concentrations of sixteen priority polycyclic aromatic hydrocarbons (16 PAHs) were determined in four types of edible vegetables (tomatoes, zucchini, eggplants, and cucumbers), irrigation water, and agriculture soil, where samples were collected from the Jordan Valley, Jordan. The mean total concentration of 16 PAHs (∑16PAHs) ranged from 10.649 to 21.774 µg kg−1 in vegetables, 28.72 µg kg−1 in soil, and 0.218 µg L−1 in the water samples. The tomato samples posed the highest ∑16PAH concentration level in the vegetables, whereas the zucchini samples had the lowest. Generally, the PAHs with a high molecular weight and four or more benzene rings prevailed among the studied samples. The diagnostic ratios and the principal component analysis (PCA) revealed that the PAH contamination sources in soil and vegetables mainly originated from a pyrogenic origin, traffic emission sources, and biomass combustion. The bioconcentration factors (BCF) for ∑16PAHs have been observed in the order of tomatoes > cucumbers and eggplants > zucchini. A potential cancer risk related to lifetime consumption was revealed based on calculating the incremental lifetime cancer risk of PAHs (ILCR). Therefore, sustainable agricultural practices and avoiding biomass combusting would greatly help in minimizing the potential health risk from dietary exposure to PAHs.
Populations of barley landrace [Hordeum vulgare (L.)] and wild barley progenitor [Hordeum spontaneum (L.)] were collected from 13 diverse eco-geographical regions in Jordan. In addition to two check varieties (Rum and Acsad 165) were collected from farmers’ fields. In total, 28 genotypes were evaluated during germination, early seedling and maturity stages for salt tolerance. Barley populations were exposed to tap water of 0.85 dS m-1 and saline solutions (NaCl, CaCl2 and MgSO4) of 4, 8, 12 and 16 dS m-1. Final germination percentage, the lengths of shoot and seminal root, growth and yield related traits were significantly decreased by increasing the level of salinity. Proline content was increased by increasing the level of salinity. A high level of salinity of 16 dS m-1 had a strong impact on reduction of grain yield and other agronomic traits in the examined populations. A considerable variation among populations was detectable. Barley landrace and wild barley that were collected from Tafila region were the most tolerant grown populations in Jordan. Interestingly, the ranking pattern of these two populations at the germination and seedling related-traits was consistent with the ranking pattern at the maturity phase. In conclusion, this study indicates that barley landrace and wild barley populations are potential donors for genes of salt tolerance that can be used to enhance salinity tolerance in barley.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.