Vortex shedding around circular cylinders is a well known and studied phenomenon that appears in many engineering fields. A Reduced Order Model (ROM) of the incompressible flow around a circular cylinder is presented in this work. The ROM is built performing a Galerkin projection of the governing equations onto a lower dimensional space. The reduced basis space is generated using a Proper Orthogonal Decomposition (POD) approach. In particular the focus is into (i) the correct reproduction of the pressure field, that in case of the vortex shedding phenomenon, is of primary importance for the calculation of the drag and lift coefficients; (ii) the projection of the Governing equations (momentum equation and Poisson equation for pressure) performed onto different reduced basis space for velocity and pressure, respectively; (iii) all the relevant modifications necessary to adapt standard finite element POD-Galerkin methods to a finite volume framework. The accuracy of the reduced order model is assessed against full order results.
We present two different reduced order strategies for incompressible parameterized Navier-Stokes equations characterized by varying Reynolds numbers. The first strategy deals with low Reynolds number (laminar flow) and is based on a stabilized finite element method during the offline stage followed by a Galerkin projection on reduced basis spaces generated by a greedy algorithm. The second methodology is based on a full order finite volume discretization. The latter methodology will be used for flows with moderate to high Reynolds number characterized by turbulent patterns. For the treatment of the mentioned turbulent flows at the reduced order level, a new POD-Galerkin approach is proposed. The new approach takes into consideration the contribution of the eddy viscosity also during the online stage and is based on the use of interpolation. The two methodologies are tested on classic benchmark test cases.
In this work, Uncertainty Quantification (UQ) based on non-intrusive Polynomial Chaos Expansion (PCE) is applied to the CFD problem of the flow past an airfoil with parameterized angle of attack and inflow velocity. To limit the computational cost associated with each of the simulations required by the non-intrusive UQ algorithm used, we resort to a Reduced Order Model (ROM) based on Proper Orthogonal Decomposition (POD)-Galerkin approach. A first set of results is presented to characterize the accuracy of the POD-Galerkin ROM developed approach with respect to the Full Order Model (FOM) solver (OpenFOAM). A further analysis is then presented to assess how the UQ results are affected by substituting the FOM predictions with the surrogate ROM ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.