Access to the cloud has the potential to provide scalable and cost effective enhancements of physical devices through the use of advanced computational processes run on apparently limitless cyber infrastructure. On the other hand, cyber-physical systems and cloud-controlled devices are subject to numerous design challenges; among them is that of security. In particular, recent advances in adversary technology pose Advanced Persistent Threats (APTs) which may stealthily and completely compromise a cyber system. In this paper, we design a framework for the security of cloud-based systems that specifies when a device should trust commands from the cloud which may be compromised. This interaction can be considered as a game between three players: a cloud defender/administrator, an attacker, and a device. We use traditional signaling games to model the interaction between the cloud and the device, and we use the recently proposed FlipIt game to model the struggle between the defender and attacker for control of the cloud. Because attacks upon the cloud can occur without knowledge of the defender, we assume that strategies in both games are picked according to prior commitment. This framework requires a new equilibrium concept, which we call Gestalt Equilibrium, a fixed-point that expresses the interdependence of the signaling and FlipIt games. We present the solution to this fixed-point problem under certain parameter cases, and illustrate an example application of cloud control of an unmanned vehicle. Our results contribute to the growing understanding of cloud-controlled systems.
While recognized as a theoretical and practical concept for over 20 years, only now ransomware has taken centerstage as one of the most prevalent cybercrimes. Various reports demonstrate the enormous burden placed on companies, which have to grapple with the ongoing attack waves. At the same time, our strategic understanding of the threat and the adversarial interaction between organizations and cybercriminals perpetrating ransomware attacks is lacking.In this paper, we develop, to the best of our knowledge, the first gametheoretic model of the ransomware ecosystem. Our model captures a multistage scenario involving organizations from different industry sectors facing a sophisticated ransomware attacker. We place particular emphasis on the decision of companies to invest in backup technologies as part of a contingency plan, and the economic incentives to pay a ransom if impacted by an attack. We further study to which degree comprehensive industry-wide backup investments can serve as a deterrent for ongoing attacks.
A core technique used by popular proxy-based circumvention systems like Tor is to privately and selectively distribute the IP addresses of circumvention proxies among censored clients to keep them unknown to the censors. In Tor, for instance, such privately shared proxies are known as bridges. A key challenge to this mechanism is the insider attack problem: censoring agents can impersonate benign censored clients in order to learn (and then block) the privately shared circumvention proxies. To minimize the risks of the insider attack threat, in-thewild circumvention systems like Tor use various proxy assignment mechanisms in order to minimize the risk of proxy enumeration by the censors, while providing access to a large fraction of censored clients. Unfortunately, existing proxy assignment mechanisms (like the one used by Tor) are based on ad hoc heuristics that offer no theoretical guarantees and are easily evaded in practice. In this paper, we take a systematic approach to the problem of proxy distribution in circumvention systems by establishing a gametheoretic framework. We model the proxy assignment problem as a game between circumvention system operators and the censors, and use game theory to derive the optimal strategies of each of the parties. Using our framework, we derive the best (optimal) proxy assignment mechanism of a circumvention system like Tor in the presence of the strongest censorship adversary who takes her best censorship actions. We perform extensive simulations to evaluate our optimal proxy assignment algorithm under various adversarial and network settings. We show that the algorithm has superior performance compared to the state of the art, i.e., provides stronger resistance to censorship even against the strongest censorship adversary. Our study establishes a generic framework for optimal proxy assignment that can be applied to various types of circumvention systems and under various threat models. We conclude with lessons and recommendations for the design of proxy-based circumvention systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.