This investigation suggests new techniques to calibrate estimators of variance. Estimators of the variance of simple mean, ratio and regression estimators under different sampling schemes are shown to be special cases of the proposed calibration techniques. The approach has more practical use due to recent advances in programming techniques and computational speed. An empirical study has been carried out to address the properties of these proposed strategies.
This paper considers the problem of estimating the size and mean value of a stigmatized quantitative character of a hidden gang in a finite population. The proposed method may be applied to solve domestic problems in a particular country or across countries: for example, a government may be interested in estimating the average income of victims or perpetrators of domestic violence. The proposed method is based on the technique introduced by Warner (1965) to estimate the proportion of a sensitive attribute in a finite population without threatening the privacy of the respondents. Expressions for the bias and variance of the proposed estimators are given, to a first order of approximation. Circumstances in which the method can be applied are studied and illustrated using a numerical example.
A new approach is presented for testing independence in contingency tables with clustered observations. The approach is based on the framework of generalized linear mixed models. Under the multinomial logistic link function, the category counts are modelled with random cluster effects and a modified likelihood ratio statistic is used for testing independence. The method is applicable to multi-way tables, and can accommodate multiple levels of clustering. It is illustrated using a benchmark dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.