Human-AI interaction is pervasive across many areas of our day to day lives. In this paper, we investigate human-AI collaboration in the context of a collaborative AI-driven word association game with partially observable information. In our experiments, we test various dimensions of subjective social perceptions (rapport, intelligence, creativity and likeability) of participants towards their partners when participants believe they are playing with an AI or with a human. We also test subjective social perceptions of participants towards their partners when participants are presented with a variety of confidence levels. We ran a large scale study on Mechanical Turk (n=164) of this collaborative game. Our results show that when participants believe their partners were human, they found their partners to be more likeable, intelligent, creative and having more rapport and use more positive words to describe their partner's attributes than when they believed they were interacting with an AI partner. We also found no differences in game outcome including win rate and turns to completion. Drawing on both quantitative and qualitative findings, we discuss AI agent transparency, include design implications for tools incorporating or supporting human-AI collaboration, and lay out directions for future research. Our findings lead to implications for other forms of human-AI interaction and communication.
Text-based games have emerged as an important test-bed for Reinforcement Learning (RL) research, requiring RL agents to combine grounded language understanding with sequential decision making.
In this paper, we examine the problem of infusing RL agents with commonsense knowledge. Such knowledge would allow agents to efficiently act in the world by pruning out implausible actions,
and to perform look-ahead planning to determine how current actions might affect future world states. We design a new text-based gaming environment called TextWorld Commonsense (TWC) for training and evaluating RL agents with a specific kind of commonsense knowledge about objects, their attributes, and affordances. We also introduce several baseline RL agents which track the sequential context and dynamically retrieve the relevant commonsense knowledge from ConceptNet. We show that agents which incorporate commonsense knowledge in TWC perform better, while acting more efficiently. We conduct user-studies to estimate human performance on TWC and show that there is ample room for future improvement.
Use of the Acccepted Manuscript is subject to AM terms of use, which permit users to view, print, copy, download and text and data-mine the content, for the purposes of academic research, subject always to the full conditions of use. Under no circumstances may the AM be shared or distributed under a Creative Commons, or other form of open access license, nor may it be reformatted or enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.