The aim of this paper is to study the existence and uniqueness of solutions for nonlinear fractional relaxation impulsive implicit delay differential equations with boundary conditions. Some findings are established by applying the Banach contraction mapping principle and the Schauder fixed-point theorem. An example is provided that illustrates the theoretical results.
This research paper is devoted to investigating the existence results for impulsive fractional integrodifferential equations in the form of Atangana - Baleanu - Caputo (ABC) fractional derivative, by using Gronwall–Bellman inequality and Krasnoselskii’s fixed point theorem to study the existence and uniqueness of the problem with integral boundary conditions. At the end, the examples are illustrated to verify results.
In this study, we consider the existence results of solutions of impulsive Atangana–Baleanu–Caputo
A
B
C
fractional integro-differential equations with integral boundary conditions. Krasnoselskii’s fixed-point theorem and the Banach contraction principle are used to prove the existence and uniqueness of results. Moreover, we also establish Hyers–Ulam stability for this problem. An example is also presented at the end.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.