Oxidative stress-mediated neuroinflammatory events are the hallmark of neurodegenerative diseases. The current study aimed to synthesize a series of novel succinamide derivatives and to further investigate the neuroprotective potential of these compounds against scopolamine-induced neuronal injury by in silico, morphological, and biochemical approaches. The characterization of all the succinamide derivatives was carried out spectroscopically via proton NMR (1H-NMR), FTIR and elemental analysis. Further in vivo experiments showed that scopolamine induced neuronal injury, characterized by downregulated glutathione (GSH), glutathione S-transferase (GST), catalase, and upregulated lipid peroxidation (LPO). Moreover, scopolamine increased the expression of inflammatory mediators such as cyclooxygenase2 (COX2), nuclear factor kappa B (NF-kB), tumor necrosis factor (TNF-α), further associated with cognitive impairment. On the other hand, treatment with succinamide derivatives ameliorated the biochemical and immunohistochemical alterations induced by scopolamine, further supported by the results obtained from molecular docking and binding affinities.
Rosa webbiana L. (Rosaceae) is one of the least reported and most understudied members of this family. It is native to the Himalayan regions of Pakistan and Nepal. The anti-convulsant effect of n-hexane extract of fruit of Rosa webbiana was investigated in a pentylenetetrazole (PTZ)-induced animal model of epilepsy. Male Sprague-Dawley rats were divided into six groups (n = 7) including control, PTZ (40 mg/kg), diazepam (4 mg/kg) and n-hexane extract (at 50, 150 and 300 mg/kg). Convulsive behavior was observed and resultant seizures were scored, animals sacrificed and their brains preserved. Chitosan nanoparticles were prepared using the ionic gelation method and characterized by UV-analysis, zeta potential and Fourier transform infrared spectroscopy (FTIR). The effects of all the treatments on the expression of phosphorylated cytokine tumor necrosis factor α (p-TNF-α) and phosphorylated transcription factor nuclear factor kappa B (p-NF-κB) expression in the cortex and hippocampus of the brains of treated rats were studied through enzyme linked immunosorbent assay (ELISA) and morphological differences and surviving neuronal number were recorded through hematoxylene and eosin (H&E) staining. Significant changes in seizures score and survival rate of rats were observed. Downregulation of neuro-inflammation, p-TNF-α and p-NF-κB was evident. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of this fraction showed multiple constituents of interest, including esters, alkanes and amines.
Background
The purpose of this study was to investigate the suitability of nanostructured lipid carriers (NLCs) loaded with miltefosine (HePC) as an anticancer drug for the treatment of breast cancer.
Methods
HePC-NLCs were prepared using a microemulsion technique and then evaluated for particle size, polydispersity index (PDI), incorporation efficiency, in vitro release of entrapped drug, and hemolytic potential. Furthermore, pharmacokinetic, biodistribution, and liver toxicity analyses were performed in Sprague–Dawley rats, and antitumor efficacy was evaluated in Michigan Cancer Foundation-7 (MCF-7) and squamous cell carcinoma-7 (SCC-7) cells in vitro and in tumour-bearing BALB/c mice in vivo. Advanced analyses including survival rate, immunohistopathology, and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays were performed to evaluate apoptosis in vivo.
Results
The average particle size of the HePC-NLCs was 143 ± 16 nm, with a narrow PDI (0.104 ± 0.002), and the incorporation efficiency was found to be 91 ± 7%. The NLCs released HePC in a sustained manner, and this release was significantly lower than that of free drug. The in vitro hemolytic assay demonstrated a significantly reduced hemolytic potential (~9%) of the NLCs compared to that of the test formulations. The HePC-NLCs demonstrated enhanced pharmacokinetic behaviour over free drug, including extended blood circulation and an abridged clearance rate in rats. Furthermore, the HePC-NLCs exhibited higher cytotoxicity than the free drug in MCF-7 and SCC-7 cells. Moreover, the HePC-NLCs showed significantly enhanced (
P
< 0.005) antitumor activity compared to that of the control and free drug-treated mouse groups. Tumour cell apoptosis was also confirmed, indicating the antitumor potential of the HePC-NLCs.
Conclusion
These findings demonstrate the ability of NLCs as a drug delivery system for enhanced pharmacokinetic, antitumor, and apoptotic effects, most importantly when loaded with HePC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.