Purpose
– The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow of a two-phase particulate suspension is investigated numerically over a semi-infinite vertical flat plate. Comprehensive flow formations of the gas and particle phases are given in the boundary layer region. Primitive variable formulation is employed to convert the nondimensional governing equations into the non-conserved form. Three important two-phase mechanisms are discussed, namely, water-metal mixture, oil-metal mixture and air-metal mixture.
Design/methodology/approach
– The full coupled nonlinear system of equations is solved using implicit two point finite difference method along the whole length of the plate.
Findings
– The authors have presented numerical solution of the dusty boundary layer problem. Solutions obtained are depicted through the characteristic quantities, such as, wall shear stress coefficient, wall heat transfer coefficient, velocity distribution and temperature distribution for both phases. Results are interpreted for wide range of Prandtl number Pr (0.005-1,000.0). It is observed that thin boundary layer structures can be formed when mass concentration parameter or Prandtl number (e.g. oil-metal particle mixture) are high.
Originality/value
– The results of the study may be of some interest to the researchers of the field of chemical engineers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.