The modulational instability and envelope solitons of ion acoustic waves in an unmagnetized nonthermal electron-positron-ion (epi) plasma are investigated. The ions are taken to be dynamic and warm while electrons and positrons are assumed to be inertialess and hot which follow the kappa (or Generalized Lorentzian) distribution. The Krylov-Bogoliubov-Mitropolsky method is used to derive the nonlinear Schrödinger equation for nonlinear amplitude modulation of ion acoustic waves in nonthermal epi plasmas with warm ions. The dispersive and nonlinear coefficients are obtained for ion acoustic waves in nonthermal epi plasmas which depend on spectral indices of kappa distributed electrons and positrons, ion temperature and positron density. The modulationally stable and unstable regions are studied for a wide range of wave numbers and it is found that the finite ion temperature, positron density and spectral indices of kappa distributed electrons and positrons play a significant role in the formation of bright and dark envelope solitons in nonthermal epi plasmas with adiabatically heated ions. Our findings are applicable to explain some aspects of nonlinear propagation of envelope solitons in astrophysical plasma situations such as neutron stars or pulsars where nonthermal epi plasmas with warm ions can exist
The nonlinear amplitude modulation of ion acoustic wave is studied in the presence of warm ions in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolsky (KBM) method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depends on the ion temperature and positron density in electron-positron-ion plasmas. The modulationally stable and unstable regions are studied numerically for a wide range of wave number. It is found that both ion temperature and positron density play a significant role in the formation of bright and dark envelope solitons in electron-positron-ion plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.