International audienceVarious mechanisms can affect the permeability of dense unconsolidated sands: Volumetric dilation can lead to permeability increase, whereas strain localization in shear bands may increase or decrease the permeability depending on the state of compaction and on the level of grains breakage inside the band. To investigate these various mechanisms, an experimental study has been performed to explore the effect of different factors such as grain size and grain shape, confining pressure, level of shear, stress path, and formation of one or several shear bands on the permeability of dense sands under triaxial loading. The experimental results show a reduction of permeability during the consolidation phase and during the volumetric contraction phase of shear loading, which can be related to the decrease of porosity. The experimental results also show that, depending on the confining pressure, the permeability remains stable or decreases during the volumetric dilation phase despite the increase of total porosity. This permeability reduction is attributed to the presence of fine particles, which result from grains attrition during pre-localization and grains breakage inside the shear band during the post-localization phase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.