There are significant controversies surrounding the detection of precursors that may precede earthquakes. Natural hazard signatures associated with strong earthquakes can appear in the lithosphere, troposphere, and ionosphere, where current remote sensing technologies have become valuable tools for detecting and measuring early warning signals of stress build-up deep in the Earth’s crust (presumably associated with earthquake events). Here, we propose implementing a machine learning support vector machine (SVM) technique, applied with GPS ionospheric total electron content (TEC) pre-processed time series estimations, to evaluate potential precursors caused by earthquakes and manifested as disturbances in the TEC data. After filtering and screening our data for solar or geomagnetic influences at different time scales, our results indicate that for large earthquakes (> Mw 6), true negative predictions can be achieved with 85.7% accuracy, and true positive predictions with an accuracy of 80%. We tested our method with different skill scores, such as accuracy (0.83), precision (0.85), recall (0.8), the Heidke skill score (0.66), and true skill statistics (0.66).
This work addresses the problem of performing an accurate 3D mapping of a flexible antenna surface. Consider a high-gain satellite flexible antenna; even a submillimeter change in the antenna surface may lead to a considerable loss in the antenna gain. Using a robotic subreflector, such changes can be compensated for. Yet, in order to perform such tuning, an accurate 3D mapping of the main antenna is required. This paper presents a general method for performing an accurate 3D mapping of marked surfaces such as satellite dish antennas. Motivated by the novel technology for nanosatellites with flexible high-gain antennas, we propose a new accurate mapping framework which requires a small-sized monocamera and known patterns on the antenna surface. The experimental result shows that the presented mapping method can detect changes up to 0.1millimeter accuracy, while the camera is located 1 meter away from the dish, allowing an RF antenna optimization for Ka and Ku frequencies. Such optimization process can improve the gain of the flexible antennas and allow an adaptive beam shaping. The presented method is currently being implemented on a nanosatellite which is scheduled to be launched at the end of 2018.
Flash floods in the Eastern Mediterranean (EM) region are considered among the most destructive natural hazards, which pose a significant challenge to model due to their high complexity. Machine learning (ML) methods have made a significant contribution to the advancement of flash flood prediction systems by providing cost-effective solutions with improved performance, enabling the modeling of the complex mathematical expressions underlying physical processes of flash floods. Thus, the development of ML methods for flash flood prediction holds the potential to mitigate risks, inform policy recommendations, minimize loss of human life, and reduce property damage caused by flash floods. Here, we present a novel approach for improving flash flood predictions in the EM region using Support Vector Machines (SVMs) with a combination of precipitable water vapor (PWV) data, derived from ground-based global navigation satellite system (GNSS) receivers, along with surface pressure measurements, and nearby lightning occurrence data to predict flash floods in an arid region of the EM. The SVM model was trained on historical data from 2004 to 2019 and was used to forecast the likelihood of flash floods in the region. The study found that integrating nearby lightning data with the other variables significantly improved the accuracy of flash flood prediction compared to using only PWV and surface pressure measurements. The results of the SVM model were validated using observed flash flood events, and the model was found to have a high predictive accuracy with an area under the receiver operating characteristic curve of 0.93 for the test set. The study provides valuable insights into the potential of utilizing a combination of meteorological and lightning data for improving flash flood forecasting in the Eastern Mediterranean region.
<p>Flash floods occur when heavy rain causes a fast and powerful flow of water in a drainage area. In the Eastern Mediterranean region, which contains arid and semi-arid areas, the location and timing of rainfall is the most significant factor in the formation of flash floods. Predicting when and where extreme weather events such as storms, heavy rainfall, and flooding are likely to happen is a key challenge in the effort to prevent natural disasters. Here, we present an improved version of a previous work by Ziskin and Reuveni, which investigated the use of precipitable water vapor (PWV) data from ground-based global navigation satellite system (GNSS) stations, along with surface pressure measurements to predict flash floods in an arid region of the eastern Mediterranean. The previous study involved training three machine learning models to perform a binary classification task, using multiple unique flash flood events and testing the models using a nested cross-validation technique. The results showed that the support vector machine (SVM) model had the highest mean area under the curve (AUC) and the lowest AUC variability compared to random forest (RF) and multi-layer perceptron (MLP) models.&#160; When tested on an imbalanced dataset simulating a more realistic flash flood occurrence scenario, all models demonstrated a decrease in the false alarm rate (precision) with a high hit rate (recall) performance.</p> <p>In this study, we extend the previous work by integrating nearby lightning data as a new feature in our studied dataset. The inclusion of this feature is motivated by the observation that heavy rainfall, which can lead to flood events, is often accompanied before by an increase in lightning activity. The experimental results show that the adding a 24-hour vector of nearby lightning activity improves the precision score significantly.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.