Citation: Deliyanti D, Alrashdi SF, Tan SM, et al. Nrf2 activation is a potential therapeutic approach to attenuate diabetic retinopathy. Invest Ophthalmol Vis Sci. 2018;59:815-825. https:// doi.org/10.1167/iovs.17-22920 PURPOSE. Oxidative stress is a causal factor in the development of diabetic retinopathy; however, clinically relevant strategies to treat the disease by augmenting antioxidant defense mechanisms have not been fully explored. We hypothesized that boosting nuclear factor erythroid-2-related factor 2 (Nrf2) antioxidant capacity with the novel Nrf2 activator dh404, would protect the retina in diabetes including vision-threatening breakdown of the bloodretinal barrier (BRB) and associated damage to macroglial Müller cells.METHODS. Sprague-Dawley rats were randomized to become diabetic or nondiabetic and administered dh404 by gavage for 10 weeks. Complementary in vitro studies were performed in cultured Müller cells exposed to hyperglycemia. RESULTS.In diabetes, dh404 prevented vascular leakage into the retina and vitreous cavity as well as upregulation of the vascular permeability and angiogenic factors, VEGF, and angiopoietin-2, and inflammatory mediators, including TNF-a and IL-6. Müller cells, which maintain BRB integrity and become gliotic in diabetes with increased immunolabeling for glial fibrillary acidic protein, were protected by dh404. In diabetes, dh404 bolstered the antioxidant capacity of the retina with an increase in hemeoxygenase-1, nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) quinine oxidoreductase-1, and Nrf2. Further, dh404 attenuated the diabetes-induced increase in oxidative stress as measured by dihydroethidium and 8-oxo-2 0 -deoxyguanosine (8-OHdG) immunolabeling as well as NADPH oxidase isoform expression. Studies in Müller cells supported these findings with dh404 attenuating the hyperglycemia-induced increase in vascular permeability, angiogenic and inflammatory mediators, and oxidative stress.CONCLUSIONS. Our data demonstrate the ability of dh404 to protect the retina against diabetesinduced damage and potentially prevent vision loss.
Hypertension is a risk factor for the vascular permeability and neovascularization that threatens vision in diabetic retinopathy. Excess reactive oxygen species derived from the Nox (NADPH oxidase) isoforms, Nox1 and Nox4, contributes to vasculopathy in diabetic retinopathy; however, if Nox1/4 inhibition is beneficial in hypertensive diabetic retinopathy is unknown. Here, we determined that diabetic spontaneously hypertensive rats had exacerbated retinal vascular permeability and expression of angiogenic and inflammatory factors, compared with normotensive diabetic Wistar Kyoto rats. GKT136901, a specific dual inhibitor of Nox1 and Nox4, prevented these events in diabetic Wistar Kyoto rats and spontaneously hypertensive rats. Retinal neovascularization does not develop in diabetic rodents, and therefore, the oxygen-induced retinopathy model is used to evaluate this pathology. We previously demonstrated that Nox1/4 inhibition reduced retinal neovascularization in oxygen-induced retinopathy. However, although Nox5 is expressed in human retina, its contribution to retinopathy has not been studied in vivo, largely due to its absence from the rodent genome. We generated transgenic mice with inducible human Nox5 expressed in endothelial cells (vascular endothelial-cadherin + Nox5 + mice). In vascular endothelial-cadherin + Nox5 + mice with oxygen-induced retinopathy, retinal vascular permeability and neovascularization, as well as the expression of angiogenic and inflammatory factors, were increased compared with wild-type littermates. In bovine retinal endothelial cells, which express Nox1, Nox4, and Nox5, Nox1/4 inhibition, as well as Nox5 silencing RNA, reduced the high glucose–induced upregulation of oxidative stress, angiogenic, and inflammatory factors. Collectively, these data indicate the potential of Nox1, Nox4, and Nox5 inhibition to reduce vision-threatening damage to the retinal vasculature.
Although increasing evidence indicates that endothelin-2 (Edn2) has distinct roles in tissue pathology, including inflammation, glial cell dysfunction, and angiogenesis, its role in the retina and the factors that regulate its actions are not fully understood. We hypothesized that Edn2 damages the blood-retinal barrier (BRB) and that this is mediated by interactions with the renin-angiotensin-aldosterone system and reactive oxygen species derived from NADPH oxidase (Nox). C57BL/6J mice received an intravitreal injection of Edn2 or control vehicle to examine the blood pressure-independent effects of Edn2. Mice administered Edn2 were randomized to receive by intraperitoneal injection treatments that inhibited the Edn type a receptor, Edn type b receptor, angiotensin type 1 receptor, mineralocorticoid receptor, or Nox isoforms 1 to 4. One month later, mice administered Edn2 exhibited breakdown of the BRB with increased vascular leakage, vascular endothelial growth factor expression, and infiltrating macrophages (Ly6CCD45CD11b). Further, macroglial Müller cells, which influence the integrity of the BRB and prevent retinal edema, became gliotic and expressed increased levels of water (aquaporin-4) and ion (Kir4.1) channels. This Edn2-mediated retinopathy was reduced by all treatments. Complementary in vitro studies in cultured Müller cells supported these findings and demonstrated the importance of reactive oxygen species in mediating these events. In conclusion, Edn2 has detrimental effects on the BRB and Müller cells that involve interactions with the renin-angiotensin aldosterone system and Nox1/4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.