Skin is the outermost covering of the human body and at the same time the largest organ comprising 15% of body weight and 2 m surface area. Skin plays a key role as a barrier against the outer environment depending on its thickness, color and structure, which differ from one site to another. The four major types of problematic wounds include ulcers (diabetic, venous, pressure) and burn wounds. Developing novel dressings helps us to improve the wound healing process in difficult patients. Recent advances in regenerative medicine and nanotechnology are revolutionizing the field of wound healing. Antimicrobial activity, exogenous cell therapy, growth factor delivery, biodegradable and biocompatible matrix construction, all play a role in hi-tech dressing design. In the present review, we discuss how the principles of regenerative medicine and nanotechnology can be combined in innovative wound dressings.
Tissue engineering and regenerative medicine follow a multidisciplinary attitude to the expansion and application of new materials for the treatment of different tissue defects. Typically, proper tissue regeneration is accomplished through concurrent biocompatibility and positive cellular activity. This can be resulted by the smart selection of platforms among bewildering arrays of structural possibilities with various porosity properties (ie, pore size, pore connectivity, etc). Among diverse porous structures, zeolite is known as a microporous tectosilicate that can potentially provide a biological microenvironment in tissue engineering applications. In addition, zeolite has been particularly appeared promising in wound dressing and bone‐ and tooth‐oriented scaffolds. The wide range of composition and hierarchical pore structure renders the zeolitic materials a unique character, particularly, for tissue engineering purposes. Despite such unique features, research on zeolitic platforms for tissue engineering has not been classically presented. In this review, we overview, classify, and categorize zeolitic platforms employed in biological and tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.