Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.
The geographic origin and migration of the brown rat (Rattus norvegicus) remain subjects of considerable debate. In this study, we sequenced whole genomes of 110 wild brown rats with a diverse world-wide representation. We reveal that brown rats migrated out of southern East Asia, rather than northern Asia as formerly suggested, into the Middle East and then to Europe and Africa, thousands of years ago. Comparison of genomes from different geographical populations reveals that many genes involved in the immune system experienced positive selection in the wild brown rat.
Copy number variations (CNVs) are important large-scale variants. They are widespread in the genome and may contribute to phenotypic variation. Detection and characterization of CNVs can provide new insights into the genetic basis of important traits. Here, we perform whole-genome short read sequence analysis to identify CNVs in two indigenous and commercial chicken breeds to evaluate the impact of the identified CNVs on breed-specific traits. After filtration, a total of 12 955 CNVs spanning (on average) about 9.42% of the chicken genome were found that made up 5467 CNV regions (CNVRs). Chicken quantitative trait loci (QTL) datasets and Ensembl gene annotations were used as resources for the estimation of potential phenotypic effects of our CNVRs on breed-specific traits. In total, 34% of our detected CNVRs were also detected in earlier CNV studies. These CNVRs partly overlap several previously reported QTL and gene ontology terms associated with some important traits, including shank length QTL in Creeper-specific CNVRs and body weight and egg production characteristics, as well as muscle and body organ growth, in the Arian commercial breed. Our findings provide new insights into the genomic structure of the chicken genome for an improved understanding of the potential roles of CNVRs in differentiating between breeds or lines.
A three-generation resource population was developed using two distinct Japanese quail strains, wild and white, to map quantitative trait loci underlying hatching weight and growth traits. Eight pairs of white and wild birds were crossed reciprocally and 34 F1 birds were produced. The F1 birds were intercrossed to generate 422 F2 offspring. All of the animals from three generations (472 birds) were genotyped for eight microsatellite markers on chromosome 1. Liveweight data from hatch to 5 weeks of age were collected on the F2 birds. Quantitative trait loci (QTL) analysis was conducted applying the line-cross model and the least-squares interval mapping approach. The results indicated QTL affecting hatching weight and several growth related traits on chromosome 1. The F2 phenotypic variance explained by the detected additive QTL effects ranged from 1.0 to 3.7 for different traits. Modelling both additive and dominance QTL effects revealed additional QTL with significant dominance mode of action affecting pre-slaughter weight. However, there was no evidence for imprinting (parent-of-origin) effects. The variance due to the reciprocal cross effect ranged between 3.0 and 19.1% for weight at 1 week of age and hatching weight, respectively.
The Japanese quail (Coturnix japonica) is an important agricultural species and is an animal model for genetic researches. This study was conducted to identify quantitative trait loci (QTL) affecting live weight and growth rate on chromosome 3 in quail. Two strains of Japanese quail including wild and white were crossed reciprocally and F1 generation was created. The birds from F2 generation were measured for growth traits and all of 472 birds (8 pairs from the parental strains, 34 F1 birds and 422 F2 birds) were genotyped for microsatellite markers on chromosome 3. The results indicated chromosome wide significant QTL for hatching weight (P < 0.01) and weight at 1, 2, 3 and 4 weeks of age, average daily gain from hatch to 1, 1-2 and 3-4 weeks of age and Kleiber ratio (P < 0.05), an indirect criterion of feed efficiency. The highest QTL additive and imprinting effects (2.72 and 0.79 % of the trait variation in the F2 population, respectively) were related to hatching weight. The identified QTL for this trait (at 7 cM relative to the centromeric region of the chromosome) had significant interaction with sex and hatch (P < 0.01). The dominance effect of QTL was significant (P < 0.05) for bodyweight at one week of age accounting for 1.69 % of the trait variation in the F2 population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.