Epigenetic, along with genetic mechanisms, is essential for natural evolution and maintenance of specific patterns of gene expression in mammalians. Global epigenetic variation is inherited somatically and unlike genetic variation, it is dynamic and reversible. They are somatically associated with known genetic variations.Recent studies indicate the broad role of epigenetic mechanisms in the initiation and development of cancers, that they are including DNA methylation, histone modifications, nucleosomes changes, non-coding RNAs. The reversible nature of epigenetic changes has led to the emergence of novel epigenetic therapeutic approaches, so that several types of these medications have been approved by the FDA so far.In this review, we discuss the concept of epigenetic changes in diseases, especially cancers, the role of these changes in the onset and progression of cancers and the potential of using this knowledge in designing novel therapeutic strategies.
Breast cancer (BC) is the most prevalent cancer in women worldwide. Although extensive studies are ongoing concerning its intricate molecular mechanisms, development of novel therapies and more accurate diagnostic and prognostic approaches is still a challenge. Epithelial-mesenchymal transition (EMT) enables the invasion of metastatic cancer cells and has recently been highlighted in a Cancer Stem Cell (CSC) model of BC. Epigenetic events as well as miRNA expression are the master regulators of tumorigenesis and add a further layer to the complexity of BC pathogenesis. The miRNAs are related to epigenetic event and additionally affect epigenetic pathways. Recent evidence demonstrates that epigenetic mechanisms such as DNA methylation may control miRNA expression. Because each miRNA may regulate several target genes, dysregulation of miRNA caused by aberrant DNA methylation patterns of the locus may influence important downstream pathways. Furthermore, some miRNAs is believed to regulate important DNA methylator factors. Any disruption or modification of this intricate network can contribute to the disease process; thus, it is essential to understand these changes. Advancements in new sequencing technologies to detect DNA methylation patterns has provided the opportunity to determine differentially methylated regions (DMRs) of the miRNA locus and their effect on expression profiles to improve BC diagnosis and treatment. The current review examines the interplay of DNA methylation mechanisms and miRNA function in invasive tumorigenesis, specifically EMT and CSC of BC, to highlight its potential for advancements on BC etiology, diagnosis, and therapy.
Zinc finger E‐box binding homeobox 2 (ZEB2) is a DNA‐binding transcription factor, which is mainly involved in epithelial‐to‐mesenchymal transition (EMT). EMT is a conserved process during which mature and adherent epithelial‐like state is converted into a mobile mesenchymal state. Emerging data indicate that ZEB2 plays a pivotal role in EMT‐induced processes such as development, differentiation, and malignant mechanisms, for example, drug resistance, cancer stem cell‐like traits, apoptosis, survival, cell cycle arrest, tumor recurrence, and metastasis. In this regard, the understanding of mentioned subjects in the development of normal and cancerous cells could be helpful in cancer complexity of diagnosis and therapy. In this study, we review recent findings about the biological properties of ZEB2 in healthy and cancerous states to find new approaches for cancer treatment.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the tumor necrosis factor (TNF) superfamily that induces apoptosis in different types of cancer cells via activation of caspase cascade. TRAIL interacts with its cognate receptors that placed on cancer cells surface, including TRAIL-R1 (death receptor 4, DR4), TRAIL-R2 (death receptor 5, DR5), TRAIL-R3 (decoy receptor 1, DcR1), TRAIL-R4 (decoy receptor 2, DcR2), and osteoprotegerin (OPG). Despite high apoptosis-inducing ability of TRAIL, various cancerous cells gain resistance to TRAIL gradually, and consequently TRAIL potential for apoptosis stimulation in these cells diminishes intensely. According to diverse ranges of examinations, intracellular anti-apoptotic proteins, such as cellular-FLICE inhibitory protein (c-FLIP), apoptosis inhibitors (IAPs), myeloid cell leukemia sequence 1 (MCL-1), BCL-2, BCL-XL, and survivin play key role in cancer cells resistance to TRAIL. These proteins attenuate cancer cells sensitivity to TRAIL via various functions, importantly through caspase cascade suppression. The c-FLIP avoids from caspase 8 activation by FADD via binding to caspase 8 cleavage of FADD. Moreover, it activates signaling pathways that involved in cancer cells survival and proliferation. Intriguingly, it appears that the down-regulation of intracellular anti-apoptotic proteins, particularly c-FLIP is effectiveness goal for TRAIL-resistant cancers therapy, because their up-regulation in association with poor prognosis has been observed in various types of TRAIL-resistant cancers. In this review, we tried to collect and examine investigations that researchers have been able to sensitize cancer cells to TRAIL through targeting of c-FLIP alone or with other intracellular anti-apoptotic proteins directly or indirectly. It seems that co-treatment of resistant cells by TRAIL with other therapeutic agents with the aim of intracellular anti-apoptotic proteins inhibition is hopeful and attractive approach to overcome various TRAIL-resistant cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.