The global population of individuals over the age of 65 is growing at an unprecedented rate and is expected to reach 1.6 billion by 2050. Most older individuals are affected by multiple chronic diseases, leading to complex drug treatments and increased risk of physical and cognitive disability. Improving or preserving the health and quality of life of these individuals is challenging due to a lack of well‐established clinical guidelines. Physicians are often forced to engage in cycles of “trial and error” that are centered on palliative treatment of symptoms rather than the root cause, often resulting in dubious outcomes. Recently, geroscience challenged this view, proposing that the underlying biological mechanisms of aging are central to the global increase in susceptibility to disease and disability that occurs with aging. In fact, strong correlations have recently been revealed between health dimensions and phenotypes that are typical of aging, especially with autophagy, mitochondrial function, cellular senescence, and DNA methylation. Current research focuses on measuring the pace of aging to identify individuals who are “aging faster” to test and develop interventions that could prevent or delay the progression of multimorbidity and disability with aging. Understanding how the underlying biological mechanisms of aging connect to and impact longitudinal changes in health trajectories offers a unique opportunity to identify resilience mechanisms, their dynamic changes, and their impact on stress responses. Harnessing how to evoke and control resilience mechanisms in individuals with successful aging could lead to writing a new chapter in human medicine.
Heritability, the proportion of phenotypic variance explained by genetic factors, can be estimated from pedigree data 1 , but such estimates are uninformative with respect to the underlying genetic architecture. Analyses of data from genome-wide association studies (GWAS) on unrelated individuals have shown that for human traits and disease, approximately one-third to two-thirds of heritability is captured by common SNPs 2-5 . It is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular if the causal variants are rare, or other reasons such as overestimation of heritability from pedigree data. Here we show that pedigree heritability for height and body mass index (BMI) appears to be fully recovered from whole-genome sequence (WGS) data on 21,620 unrelated individuals of European ancestry. We assigned 47.1 million genetic variants to groups based upon their minor allele frequencies (MAF) and linkage disequilibrium (LD) with variants nearby, and estimated and partitioned variation accordingly. The estimated heritability was 0.79 (SE 0.09) for height and 0.40 (SE 0.09) for BMI, consistent with pedigree estimates. Low-MAF variants in low LD with neighbouring variants were enriched for heritability, to a greater extent for protein altering variants, consistent with negative selection thereon. Cumulatively variants in the MAF range of 0.0001 to 0.1 explained 0.54 (SE 0.05) and 0.51 (SE 0.11) of heritability for height and BMI, respectively. Our results imply that the still missing heritability of complex traits and disease is accounted for by rare variants, in particular those in regions of low LD.
Purpose: To determine the activity of seminal plasma catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) and their relationship with malondialdehyde (MDA), as a marker of lipid peroxidation, content of spermatozoa and seminal plasma in normozoospermic and asthenozoospermic males. Materials and Methods: Semen samples were obtained from 15 normozoospermic and 30 asthenozoospermic men. Results: We observed inverse correlations between activities of CAT (k/mL) and SOD (U/mL) in seminal plasma with MDA content of spermatozoa from normozoospermic samples (r =-0.43, p < 0.05 and r =-0.5, p < 0.05, respectively). Significant correlations were observed between total activity CAT (k/total seminal plasma) with total SOD (U/total seminal plasma) and GPX activity (mU/total seminal plasma) in seminal plasma from normozoospermic samples (r = 0.67, p = 0.008 and r = 0.455, p = 0.047, respectively). Furthermore, we found positive correlations between total activities of CAT, SOD and GPX with total content of MDA in seminal plasma (nmoL/total seminal plasma) from normozoospermic samples (r = 0.67, p = 0.003; r = 0.73, p = 0.003; r = 0.74, p = 0.004, respectively). In asthenozoospermic samples, there were no significant correlations observed between activities of CAT (k/mL), SOD (U/mL) and GPX (mU/mL) of seminal plasma with MDA content of spermatozoa. However, we found significant correlations between total activities of CAT (k/total seminal plasma) and SOD (U/total seminal plasma) with total content of MDA in seminal plasma (r = 0.4, p = 0.018 and r = 0.34, p = 0.03, respectively). Conclusion: These findings indicate a protective role for antioxidant enzymes of seminal plasma against lipid peroxidation of spermatozoa in normozoospermic samples.
BackgroundImpairment in glomerular endothelial function likely plays a major role in the development of albuminuria and CKD progression. Glomerular endothelial dysfunction may reflect systemic microvascular dysfunction, accounting in part for the greater cardiovascular risk in patients with albuminuria. Prior studies of vascular function in CKD have focused on conduit artery function or those with ESRD, and have not examined microvascular endothelial function with albuminuria.MethodsWe conducted a cross-sectional study among older hypertensive male veterans with stage 1–4 CKD, and hypertensive controls without CKD. Microvascular function was quantified by two distinct Laser-Doppler flowmetry (LDF) measures: peak responses to 1) post-occlusive reactive hyperemia (PORH) and 2) thermal hyperemia (TH), measured on forearm skin. Associations of each LDF measure with albuminuria, eGFR, and CKD status were estimated using correlation coefficients and multiple linear regression, accounting for potential confounders.ResultsAmong 66 participants (mean age 69.2 years), 36 had CKD (mean eGFR 46.1 cc/min/1.73 m2; 30.6 % with overt albuminuria). LDF responses to PORH and TH were 43 and 39 % significantly lower in multivariate analyses among those with macroalbuminuria compared to normoalbuminuria, (β= − 0.42, p = 0.009 and β= −0.37, p = 0.01, respectively). Those with CKD had a 23.9 % lower response to PORH compared to controls (p = 0.02 after adjustment). In contrast, TH responses did not differ between those with and without CKD.ConclusionsMicrovascular endothelial function was strongly associated with greater albuminuria and CKD, independent of diabetes and blood pressure. These findings may explain in part the excess systemic cardiovascular risk associated with albuminuria and CKD.
Within the past several decades, the emergence of new viral diseases with severe health complications and mortality is evidence of an age-dependent, compromised bodily response to abrupt stress with concomitantly reduced immunity. The new severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, causes coronavirus disease 2019 (COVID-19). It has increased morbidity and mortality in persons with underlying chronic diseases and those with a compromised immune system regardless of age and in older adults who are more likely to have these conditions. While SARS-CoV-2 is highly virulent, there is variability in the severity of the disease and its complications in humans. Severe pneumonia, acute respiratory distress syndrome, lung fibrosis, cardiovascular events, acute kidney injury, stroke, hospitalization, and mortality have been reported that result from pathogen–host interactions. Hallmarks of aging, interacting with one another, have been proposed to influence health span in older adults, possibly via mechanisms regulating the immune system. Here, we review the potential roles of the hallmarks of aging, coupled with host–coronavirus interactions. Of these hallmarks, we focused on those that directly or indirectly interact with viral infections, including immunosenescence, inflammation and inflammasomes, adaptive immunosenescence, genomic instability, mitochondrial dysfunction, epigenetic alterations, telomere attrition, and impaired autophagy. These hallmarks likely contribute to the increased pathophysiological responses to SARS-CoV-2 among older adults and may play roles as an additive risk of accelerated biological aging even after recovery. We also briefly discuss the role of antiaging drug candidates that require paramount attention in COVID-19 research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.