The effect of synthesized nanostructures, including graphene oxide, chemically reduced graphene oxide with sodium dodecyl sulfate (SDS), chemically reduced graphene oxide with polyvinylpyrrolidone, and multi-walled carbon nanotubes, on the kinetics of methane hydrate formation was investigated in this work. The experiments were carried out at a pressure of 4.5 MPa and a temperature of 0 °C in a batch reactor. By adding nanostructures, the induction time decreases, and the shortest induction time appeares at certain concentrations of reduced graphene oxide with SDS and graphene oxide, that is, at a concentration of 360 ppm for reduced graphene oxide with SDS and 180 ppm for graphene oxide, with a 98% decrease in induction time compared to that in pure water. Moreover, utilization of carbon nanostructures increases the amount and the rate of methane consumed during the hydrate formation process. Utilization of multi-walled carbon nanotubes with a concentration of 90 ppm showes the highest amount of methane consumption. The amount of methane consumption increases by 173% in comparison with that in pure water. The addition of carbon nanostructures does not change the storage capacity of methane hydrate in the hydrate formation process, while the percentage of water conversion to hydrate in the presence of carbon nanotubes increases considerably, the greatest value of which occurres at a 90 ppm concentration of carbon nanotubes, that is, a 253% increase in the presence of carbon nanotubes compared to that of pure water.
Gas hydrate/clathrate hydrate formation is an innovative method to trap CO2 into hydrate cages under appropriate thermodynamic and/or kinetic conditions. Due to their excellent surface properties, nanoparticles can be utilized as hydrate kinetic promoters. Here, the kinetics of the CO2 + tetra‐n‐butyl ammonium bromide (TBAB) semi‐clathrate hydrates system in the presence of two distinct nanofluid suspensions containing graphene oxide (GO) nanosheets and Al2O3 nanoparticles is evaluated. The results reveal that the kinetics of hydrate formation is inhibited by increasing the weight fraction of TBAB in aqueous solution. GO and Al2O3 are the most effective kinetic promoters for hydrates of (CO2 + TBAB). Furthermore, the aqueous solutions of TBAB + GO or Al2O3 noticeably increase the storage capacity compared to TBAB aqueous solution systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.