Maize grain is an important source of human and animal feed, and its quality can be affected by management practices and climatic conditions. This study aimed to evaluate the concentration and composition of starch, protein and oil in grain of maize cultivars in response to different planting dates (20 June and 21 July), irrigation (12-day and 6-day intervals) and nitrogen rates (0 and 184 kg N ha−1). The first two principal components (PCs) accounted for 84.5% of the total variation. High N fertilization increased protein (by 6.0 and 10.9 g kg−1) and total nonessential amino acids (by 3.4 and 2.4 g kg−1) during 2018 and 2019, respectively. With the high irrigation rate, the high N rate increased oil, total unsaturated fatty acids, and starch and amylopectin, whereas with the low irrigation rate, there was no effect of the N rate. With earlier planting, total saturated fatty acids were higher. The findings highlight the complicated relationship between the different factors and how they affect quality characteristics of maize grain. There was a large impact of year, which to a great extent cannot be controlled, even in this environment where water supply was controlled and rainfall did not affect the results.
Summary
There are inaccuracies in the chemical families of the WSSA and HRAC herbicide classification systems which could limit their practical use in herbicide‐based weed management strategies. In essence, these inaccuracies could be divided into four parts: (i) the nomenclature of many of the chemical families is not correct, (ii) distinct active ingredients are grouped in same chemical families, (iii) many chemical families have been repeated in at least two modes of action/herbicide groups, and (iv) many active ingredients have not been assigned to chemical family, herbicide group or mode of action. The aim of this study was to revise the current classifications and to propose corrections for the current ones. Detailed investigations on chemical structure of the active ingredients of the registered herbicides showed that some moieties have the same mechanisms of action. According to this study, these moieties have been assigned to the names of chemical families and active ingredients are then classified within the chemical families accordingly. This study has 119 chemical families, compared with 145 in the WSSA system and 58 in the HRAC system. A major priority of this study is the number of active ingredients covered; we included 410 active ingredients with known mechanisms of action and herbicide groups, more than 100 active ingredients more than the current classification systems. Overall, this study provides better opportunities for the management of resistance to herbicides through the application of improved pure and applied knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.