The aims of this study were 1) to analyse session-to-session variations in different external load measures and 2) to examine differences in within-session intervals across different small-sided game (SSG) formats in professional players. Twenty professional soccer players (mean ± SD; age 28.1 ± 4.6 years, height 176.7 ± 4.9 cm, body mass 72.0 ± 7.8 kg, and body fat 10.3 ± 3.8%) participated in 3v3, 4v4, and 6v6 SSGs under different conditions (i.e., touch limitations and presence of goalkeepers vs. free touch and ball possession drill) over three sessions. Selected external load measures—including total distance (TD), high-intensity running (HIR, distance covered > 14.4 km . h -1 ), high-speed running (HSR, distance covered > 19.8 km . h -1 ), and mechanical work (MW, accelerations and deceleration > 2.2 m . s 2 )—were recorded using GPS technology during all SSG sessions. Small to large standardized typical errors were observed in session-to-session variations of selected measures across SSGs. TD . min -1 showed less variability, having a coefficient of variation (CV) of 2.2 to 4.6%, while all other selected external load measures had CV values ranging from 7.2% to 29.4%. Trivial differences were observed between intervals in TD . min -1 and HIR . min -1 for all SSGs, as well as in HSR . min -1 and MW . min -1 for most SSG formats. No reductions or incremental trends in session-to-session variations were observed when employing touch limitations or adding goalkeepers. The increased noise observed in higher speed zones (e.g., high-speed running) suggests a need for more controlled, running-based conditional drills if the aim is greater consistency in these measures.
The purposes of this study were (1) to analyze between-session variations of external and internal load measures during small-sided games (SSGs) and (2) to test the relationships between the maximum speed reached (VIFT) during the last stage of the 30-15 Intermittent Fitness Test, hemoglobin levels, and training load measures during SSG intervals among professional soccer players. Sixteen professional soccer players (mean ± SD; age 27.2 ± 3.4 years, height 174.2 ± 3.6 cm, body mass 69.1 ± 6.4 kg, and body fat 10.4 ± 4.1%) participated in this study. Hemoglobin and aerobic performance were first tested, and then a 3-week SSG program was applied using a 3 vs. 3 format. During those 3 weeks, internal and external load of entire sessions were also monitored for all training sessions. Trivial-to-small, standardized differences were observed between sessions for external and internal measures during SSGs. Total distance (TD) and mechanical work (MW) were the only variables that indicated small changes. Large-to-very-large relationships were found between VIFT and external loads: TD (r range: 0.69; 0.87), high-intensity running (HIR; r range: 0.66; 0.75), and MW (r range: 0.56; 0.68). Moderate-to-large negative relationships were found between hemoglobin levels and internal loads: Edwards’ TRIMP (r range: −0.36; −0.63), %HRmax (r range: −0.50; −0.61), and red zone (r range: −0.50; −0.61). VIFT had unclear relationships with overall internal loads, while hemoglobin levels presented unclear relationships with overall external loads. In conclusion, no meaningful changes were found between sessions considering the format of play used. Additionally, the detected relationships indicate that VIFT and hemoglobin levels are good indicators of the performance capacity and physiological profile of players during SSGs. Also, the use of SSGs protocols as a monitoring complement of the 30-15IFT is suggested.
The aim of this cohort study was two-fold: (i) to analyze within-group changes of final velocity in a 30-15 intermittent fitness test (VIFT), final velocity in a Vameval test (Vvameval), 20-m sprint and countermovement jump (CMJ); (ii) to explore the relationships between VIFT and Vvameval outcomes and their changes with internal and external loads. Twenty-two professional soccer players (mean ± SD; age 27.2 ± 3.4 years, height 174.2 ± 3.6 cm, body mass 69.1 ± 6.4 kg, and body fat 10.4 ± 4.1%, 3.1 ± 1.5 years in the club) participated in this study. External and internal loads were obtained using global positioning system, heart rate and rate of perceived effort (sRPE) after each training session. Players were assessed in CMJ, 20-m sprint, Vameval and 30-15 intermittent fitness test, before and after the observed period. Very large relationships were observed between VIFT and Vameval for pre- (r = 0.76), post (r = 0.80) and pooled-data (r = 0.81). Vvameval showed less sensitivity (−22.4%, [−45.0 to 9.4]), ES −0.45 [−1.05 to 0.16]) than VIFT. ∆VIFT had unclear associations with all sRPE, but had moderate correlations with objective internal and external measures, while, ∆Vvameval varied between large and very large relationships with all sRPE, but had unclear associations with all other selected training loads. Objective internal and external loads may be used to track aerobic power related changes from VIFT.
Background: Pre-season training in soccer can induce changes in biological markers in the circulation. However, relationships between chosen hematological and biochemical blood parameters and training load have not been measured. Objective: Analyze the blood measures changes and their relationships with training loads changes after pre-season training. Methodology: Twenty-five professional soccer players were assessed by training load measures (derived from rate of perceived exertion- known as RPE) during the pre-season period. Additionally, blood samples were collected for hematological and biochemical analyses. Results: For hematological parameters, significant increases were found for platelets (PLT) (dif: 6.42; p = 0.006; d = −0.36), while significant decreases were found for absolute neutrophils count (ANC) (dif: −3.98; p = 0.006; d = 0.11), and absolute monocytes count (AMC) (dif: −16.98; p = 0.001; d = 0.78) after the pre-season period. For biochemical parameters, there were significant increases in creatinine (dif: 5.15; p = 0.001; d = −0.46), alkaline phosphatase (ALP) (dif: 12.55; p = 0.001; d = −0.84), C-reactive protein (CRP) (dif: 15.15; p = 0.001; d = −0.67), cortisol (dif: 2.85; p = 0.001; d = −0.28), and testosterone (dif: 5.38; p = 0.001; d = −0.52), whereas there were significant decreases in calcium (dif: −1.31; p = 0.007; d =0.49) and calcium corrected (dif: −2.18; p = 0.015; d = 0.82) after the pre-season period. Moreover, the Hooper Index (dif: 13.22; p = 0.01; d = 0.78), and all derived RPE measures increased after pre-season period. Moderate-to-very large positive and negative correlations (r range: 0.50–0.73) were found between the training load and hematological measures percentage of changes. Moderate-to-large positive and negative correlations (r range: 0.50–0.60) were found between training load and biochemical measures percentage of changes. Conclusions: The results indicated heavy physical loads during the pre-season, leading to a decrease in immune functions. Given the significant relationships between blood and training load measures, monitoring hematological and biochemical measures allow coaches to minimize injury risk, overreaching, and overtraining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.