Laminar burning speed and ignition delay time behavior of iso-octane at the presence of two different biofuels, ethanol and 2,5 dimethyl furan (DMF), was studied in this work. Biofuels are considered as a better alternative source of fossil fuels. There is a potentiality that combustion characteristics of iso-octane can be improved using biofuels as an oxygenated additive. In this study, three different blending ratios of 5%, 25%, and 50% of ethanol/iso-octane and DMF/iso-octane were investigated. For laminar burning speed calculation, equivalence ratio of 0.6–1.4 was considered. Ignition delay time was measured under temperature ranges from 650 K to 1100 K. Two different mechanisms were considered in numerical calculation. These mechanisms were validated by comparing the results of pure fuels with wide range of experimental and numerical data. The characteristic change of iso-octane with the presence of additives was observed by comparing the results with pure fuel. Significant change was observed on behavior of iso-octane at 50% blending ratio. A comparison was also done on the effect of two different additives. It has found that addition of DMF brings significant changes on iso-octane characteristics comparing to ethanol.
Recently, methane has been investigated as a feasible fuel for propulsion systems. The higher boiling point and higher density of methane, compared with hydrogen, makes its storage tank lighter, cheaper, and smaller to launch. Methane is abundant in the outer solar system and can be harvested on Mars, Titan, Jupiter, and many other planets and therefore, it can be used in reusable rocket engines. However, there are still some technological challenges in the methane engines development path. For example, ignition reliability and flame stability are of great importance. These challenges can be addressed by integrating low-temperature plasma (LTP) through repetitive nanosecond pulsed (RNP) discharge to the injector design. This research focuses on air/CH4 jet flames in a single-element coaxial shear injector coupled with RNP plasma discharge to study the influence of LTP on ignition characteristics and flame stability using advanced diagnostic techniques. The experiments have been performed for different fuel composition, jet velocities, discharge voltages, and frequencies at atmospheric conditions. The transient flame behavior including flame oscillation is studied using direct photography by CMOS high-speed camera. The effect of plasma discharge location on flame stability is also investigated. To demonstrate the effectiveness of RNP discharge on liftoff and blowout/blowoff velocities, the jet velocity at the critical conditions is measured and the enhancements of flame stability are then evaluated. The collected experimental data have shown that the RNP discharge can significantly extend the stability by reducing the liftoff height and increasing the velocity of blowout/blowoff phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.