The incidence of limb bone fracture and subsequent morbidity and mortality due to excessive bone loss is increasing in the progressively ageing populations of both men and women. In contrast to bone loss in the weight-bearing limb, bone mass in the protective skull vault is maintained. One explanation for this could be anatomically diverse bone matrix characteristics generated by heterogeneous osteoblast populations. We have tested the hypothesis that adult bones demonstrate site-specific characteristics, and report differences at the organ, cell and transcriptome levels. Limb bones contain greater amounts of polysulphated glycosaminoglycan stained with Alcian Blue and have significantly higher osteocyte densities than skull bone. Site-specific patterns persist in cultured adult bone-derived cells both phenotypically (proliferation rate, response to estrogen and cell volumes), and at the level of specific gene expression (collagen triple helix repeat containing 1, reelin and ras-like and estrogen-regulated growth inhibitor). Based on genome-wide mRNA expression and cluster analysis, we demonstrate that bones and cultured adult bone-derived cells segregate according to site of derivation. We also find the differential expression of genes associated with embryological development (Skull: Zic, Dlx, Irx, Twist1 and Cart1; Limb: Hox, Shox2, and Tbx genes) in both adult bones and isolated adult bone-derived cells. Together, these site-specific differences support the view that, analogous to different muscle types (cardiac, smooth and skeletal), skull and limb bones represent separate classes of bone. We assign these differences, not to mode of primary ossification, but to the embryological cell lineage; the basis and implications of this division are discussed.
DPPIV, but not ALAP, activity is associated with periodontitis and the presence of P. gingivalis.
Guided bone regeneration (GBR) is an effective alveolar ridge reconstruction technique used before or at implant placement. The combination of various barrier membranes and bone substitutes has been employed. This study aimed to perform a preliminarily evaluation of the safety and performance of a new nonabsorbable bi-layered porous polyethylene (PPE) membrane, in combination with a freeze-dried cortical bone allograft in posterior mandibular ridge augmentation. Fifteen adults who had combined posterior mandibular defects were included for ridge augmentation via GBR using PPE membrane and allograft before implant placement. The keratinized mucosa width (KW), ridge width (RW), ridge height (RH), distance from measurement matrix to bone (DMB), and horizontal alveolar width at 14.0 mm apical to the occlusal plane (HAW) were clinically measured at 15 intended implant sites before and after the augmentation. Fifteen biopsy specimens were harvested at the implant sites for histological analysis. All the subjects completed the whole study. The KW and RH showed minor gains by 0.2 ± 1.4 mm and 0.9 ± 2.3 mm respectively; however, no statistically significant differences were found between, before, and after the augmentation (P > 0.05). In contrast, the RW and HAW significantly increased by 4.8 ± 1.6 mm and 2.3 ± 1.7 mm, respectively, (P ≤ 0.001), while DMB significantly decreased by 1.0 ± 0.8 mm after treatment (P < 0.001). Histological analysis revealed that allograft underwent active bone remodeling. The PPE membrane was adequately safe and efficient to use with allograft in GBR for the reconstruction of combined ridge defects. Although some complications were observed, these were manageable and subsequently lead to successful implant placement for all the subjects. However, further randomized controlled trials are still needed to confirm these findings.
Objective As a follow-up to our previous study that demonstrated decreased salivary trefoil factor family 3 (TFF3) peptide levels in chronic periodontitis patients, this current study aimed to observe the effects of nonsurgical periodontal treatment on salivary TFF3 peptides in patients with periodontal diseases. Materials and Methods Eighty-seven volunteers that comprised of 30 individuals with healthy periodontium, 31 with gingivitis, and 26 with chronic periodontitis were considered for the study. Prior to periodontal treatment, a general periodontal examination was performed along with collection of saliva samples from each volunteer. Nonsurgical periodontal treatments were provided to patients with gingivitis and periodontitis. Two weeks post-treatment, saliva samples were recollected, and the periodontal status was re-evaluated. Salivary TFF3 concentrations were measured by enzyme-linked immunosorbent assay. Statistical Analysis Mann–Whitney U test was used when the investigated data were not normally distributed. Chi-squared test was used when dealing with categorical data. Kruskal–Wallis test with post-hoc corrections was used to compare data among the three investigated groups. Two-tailed p < 0.05 was considered as statistically significant. Results Prior to the periodontal treatment, salivary TFF3 concentrations in patients with gingivitis and periodontitis were significantly lower than those with healthy periodontium. Two weeks post-treatment, increased levels of salivary TFF3 were observed in patients with gingivitis, whereas the concentrations decreased in patients with chronic periodontitis. Conclusion This study demonstrated the effects of periodontal disease on the production of salivary TFF3 peptides. Interestingly, nonsurgical periodontal treatment also affected the recovery of salivary TFF3 peptides but varied in their outcomes between gingivitis and periodontitis patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.