Helically coiled tubes offer improved residence and thermal time distributions due to the formation of Dean vortices via centrifugal forces. Design and fabrication of several milli/microstructured helically coiled tube reactors are described for processes requiring a narrow residence time distribution (RTD) and efficient heat transfer at laminar flow regime. The performance of microstructured reactor capillaries, which provide a high specific surface area, is combined with a type of helically coiled tube, namely, a coiled flow inverter allowing for the narrowest RTD in laminar flow regimes. Axial dispersion is characterized by obtaining the RTD curves from different reactor setups. Overall heat transfer coefficients of a new reactor setup are measured in order to determine the heat transfer efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.