Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
Helicobacter pylori (H. pylori) is a gram-negative bacterium living in the human gastrointestinal tract considered as the most common cause of gastritis. H. pylori was listed as the main risk factor for gastric cancer. Triple therapy consisting of a proton pump inhibitor and combinations of antibiotics is the main treatment used. However, this line of therapy has proven less effective mainly due to biofilm formation. Bacteria can regulate and synchronize the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis, and biofilm formation by quorum sensing (QS), thus contributing to antimicrobial resistance. Henceforth, the inhibition of QS called quorum quenching (QQ) is a promising target and alternative to fight H. pylori resistance to antimicrobials. Many phytochemicals as well as synthetic compounds acting as quorum quenchers in H. pylori were described in vitro and in vivo. Otherwise, many other compounds known as quorum quenchers in other species and inhibitors of biofilm formation in H. pylori could act as quorum quenchers in H. pylori. Here, we summarize and discuss the latest findings on H. pylori’s biofilm formation, QS sensing, and QQ mechanisms.
Introduction: Since the COVID-19 pandemic began in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved with many variants of concern emerging across the world.
Methodology: In order to monitor the evolution of these variants in Morocco, we analyzed a total of 2130 genomes of the delta variant circulating around the world. We also included 164 Moroccan delta variant sequences in our analysis.
Results: Our findings suggest at least four introductions from multiple international sources and a rise of a dominant delta sub-lineage AY.33 in Morocco. Moreover, we report three mutations in the N-terminal domain of the S protein specific to the Moroccan AY.33 isolates, T29A, T250I and T299I. The effect of these mutations on the secondary structure and the dynamic behavior of the S protein N-terminal domain was further determined.
Conclusions: We conclude that these mutations might have functional consequences on the S protein of SARS-CoV-2.
Here, we report the near-complete genome sequence and genetic variations of a clinical sample of SARS-CoV-2 for the newly emerged Omicron variant (BA.1). The sample was collected from a nasopharyngeal swab of a Moroccan patient, and the sequencing was done using Ion S5 technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.