Helicobacter pylori (H. pylori) is a gram-negative bacterium living in the human gastrointestinal tract considered as the most common cause of gastritis. H. pylori was listed as the main risk factor for gastric cancer. Triple therapy consisting of a proton pump inhibitor and combinations of antibiotics is the main treatment used. However, this line of therapy has proven less effective mainly due to biofilm formation. Bacteria can regulate and synchronize the expression of multiple genes involved in virulence, toxin production, motility, chemotaxis, and biofilm formation by quorum sensing (QS), thus contributing to antimicrobial resistance. Henceforth, the inhibition of QS called quorum quenching (QQ) is a promising target and alternative to fight H. pylori resistance to antimicrobials. Many phytochemicals as well as synthetic compounds acting as quorum quenchers in H. pylori were described in vitro and in vivo. Otherwise, many other compounds known as quorum quenchers in other species and inhibitors of biofilm formation in H. pylori could act as quorum quenchers in H. pylori. Here, we summarize and discuss the latest findings on H. pylori’s biofilm formation, QS sensing, and QQ mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.