Astrocytes, oligodendrocytes, and microglia are abundant cell types found in the central nervous system and have been shown to play crucial roles in regulating both normal and disease states. An increasing amount of evidence points to the critical importance of glia in mediating neurodegeneration in Alzheimer’s and Parkinson’s diseases (AD, PD), and in ischemic stroke, where microglia are involved in initial tissue clearance, and astrocytes in the subsequent formation of a glial scar. The importance of these cells for neuronal survival has previously been studied in co-culture experiments and the search for neurotrophic factors (NTFs) initiated after finding that the addition of conditioned media from astrocyte cultures could support the survival of primary neurons in vitro . This led to the discovery of the potent dopamine neurotrophic factor, glial cell line-derived neurotrophic factor (GDNF). In this review, we focus on the relationship between glia and NTFs including neurotrophins, GDNF-family ligands, CNTF family, and CDNF/MANF-family proteins. We describe their expression in astrocytes, oligodendrocytes and their precursors (NG2-positive cells, OPCs), and microglia during development and in the adult brain. Furthermore, we review existing data on the glial phenotypes of NTF knockout mice and follow NTF expression patterns and their effects on glia in disease models such as AD, PD, stroke, and retinal degeneration.
The goal of this protocol is to establish a robust and reproducible model of α-synuclein accumulation in primary dopamine neurons. Combined with immunostaining and unbiased automated image analysis, this model allows for the analysis of the effects of drugs and genetic manipulations on α-synuclein aggregation in neuronal cultures. Primary midbrain cultures provide a reliable source of bona fide embryonic dopamine neurons. In this protocol, the hallmark histopathology of Parkinson's disease, Lewy bodies (LB), is mimicked by the addition of α-synuclein pre-formed fibrils (PFFs) directly to neuronal culture media. Accumulation of endogenous phosphorylated αsynuclein in the soma of dopamine neurons is detected by immunostaining already at 7 days after the PFF addition. In vitro cell culture conditions are also suitable for the application and evaluation of treatments preventing α-synuclein accumulation, such as small molecule drugs and neurotrophic factors, as well as lentivirus vectors for genetic manipulation (e.g., with CRISPR/Cas9). Culturing the neurons in 96 well plates increases the robustness and power of the experimental setups. At the end of the experiment, the cells are fixed with paraformaldehyde for immunocytochemistry and fluorescence microscopy imaging. Multispectral fluorescence images are obtained via automated microscopy of 96 well plates. These data are quantified (e.g., counting the number of phospho-α-synuclein-containing dopamine neurons per well) with the use of free software that provides a platform for unbiased high-content phenotype analysis. PFF-induced modeling of phosphorylated α-synuclein accumulation in primary dopamine neurons provides a reliable tool to study the underlying mechanisms mediating formation and elimination of α-synuclein inclusions, with the opportunity for high-throughput drug screening and cellular phenotype analysis.
A BS TRACT: Background: Parkinson's disease (PD) is associated with proteostasis disturbances and accumulation of misfolded α-synuclein (α-syn), a cytosolic protein present in high concentrations at pre-synaptic neuronal terminals. It is a primary constituent of intracellular protein aggregates known as Lewy neurites or Lewy bodies. Progression of Lewy pathology caused by the prion-like self-templating properties of misfolded α-syn is a characteristic feature in the brains of PD patients. Glial cell linederived neurotrophic factor (GDNF) promotes survival of mature dopamine (DA) neurons in vitro and in vivo. However, the data on its effect on Lewy pathology is controversial. Objectives: We studied the effects of GDNF on misfolded α-syn accumulation in DA neurons. Methods: Lewy pathology progression was modeled by the application of α-syn preformed fibrils in cultured DA neurons and in the adult mice. Results: We discovered that GDNF prevented accumulation of misfolded α-syn in DA neurons in culture and in vivo. These effects were abolished by deletion of receptor tyrosine kinase rearranged during transfection (RET) or by inhibitors of corresponding signaling pathway. Expression of constitutively active RET protected DA neurons from fibril-induced α-syn accumulation. Conclusions: For the first time, we have shown the neurotrophic factor-mediated protection against the misfolded α-syn propagation in DA neurons, uncovered underlying receptors, and investigated the involved signaling pathways. These results demonstrate that activation of GDNF/RET signaling can be an effective therapeutic approach to prevent Lewy pathology spread at early stages of PD.
Seven new polyaromatic bis-spiroketal-containing butenolides, the prunolides D−I (4−9) and cis-prunolide C (10), a new dibrominated β-carboline sulfamate named pityriacitrin C (11), alongside the known prunolides A−C (1−3) were isolated from the Australian colonial ascidian Synoicum prunum. The prunolides D−G (4−7) represent the first asymmetrically brominated prunolides, while cis-prunolide C ( 10) is the first reported with a cis-configuration about the prunolide's bisspiroketal core. The prunolides displayed binding activities with the Parkinson's disease-implicated amyloid protein α-synuclein in a mass spectrometry binding assay, while the prunolides (1−5 and 10) were found to significantly inhibit the aggregation (>89.0%) of α-synuclein in a ThT amyloid dye assay. The prunolides A−C (1−3) were also tested for inhibition of pSyn aggregate formation in a primary embryonic mouse midbrain dopamine neuron model with prunolide B (2) displaying statistically significant inhibitory activity at 0.5 μM. The antiplasmodial and antibacterial activities of the isolates were also examined with prunolide C (3) displaying only weak activity against the 3D7 parasite strain of Plasmodium falciparum. Our findings reported herein suggest that the prunolides could provide a novel scaffold for the exploration of future therapeutics aimed at inhibiting amyloid protein aggregation and the treatment of numerous neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.