Positron emission tomography (PET) with 18 F-fluorodeoxyglucose (18 F-FDG) has been increasingly applied, predominantly in the research setting, to study drug effects and pulmonary biology and monitor disease progression and treatment outcomes in lung diseases, disorders that interfere with gas exchange through alterations of the pulmonary parenchyma, airways and/or vasculature. To date, however, there are no widely accepted standard acquisition protocols and imaging data analysis methods for pulmonary 18 F-FDG PET/CT in these diseases, resulting in disparate approaches. Hence, comparison of data across the literature is challenging. To help harmonize the acquisition and analysis and promote reproducibility, acquisition protocol and analysis method details were collated from seven PET centers. Based on this information and discussions among the authors, the consensus recommendations reported here on patient preparation, choice of dynamic versus static imaging, image reconstruction, and image analysis reporting were reached.
Purpose Phantoms are routinely used in molecular imaging to assess scanner performance. However, traditional phantoms with fillable shapes do not replicate human anatomy. 3D-printed phantoms have overcome this by creating phantoms which replicate human anatomy which can be filled with radioactive material. The problem with these is that small objects suffer to a greater extent than larger objects from the effects of inactive walls, and therefore, phantoms without these are desirable. The purpose of this study was to explore the feasibility of creating resin-based 3D-printed phantoms using 18F. Methods Radioactive resin was created using an emulsion of printer resin and 18F-FDG. A series of test objects were printed including twenty identical cylinders, ten spheres with increasing diameters (2 to 20 mm), and a double helix. Radioactive concentration uniformity, printing accuracy and the amount of leaching were assessed. Results Creating radioactive resin was simple and effective. The radioactive concentration was uniform among identical objects; the CoV of the signal was 0.7% using a gamma counter. The printed cylinders and spheres were found to be within 4% of the model dimensions. A double helix was successfully printed as a test for the printer and appeared as expected on the PET scanner. The amount of radioactivity leached into the water was measurable (0.72%) but not visible above background on the imaging. Conclusions Creating an 18F radioactive resin emulsion is a simple and effective way to create accurate and complex phantoms without inactive walls. This technique could be used to print clinically realistic phantoms. However, they are single use and cannot be made hollow without an exit hole. Also, there is a small amount of leaching of the radioactivity to take into consideration.
Background Image optimization is a key step in clinical nuclear medicine, and phantoms play an essential role in this process. However, most phantoms do not accurately reflect the complexity of human anatomy, and this presents a particular challenge when imaging endocrine glands to detect small (often subcentimeter) tumors. To address this, we developed a novel phantom for optimization of positron emission tomography (PET) imaging of the human pituitary gland. Using radioactive 3D printing, phantoms were created which mimicked the distribution of 11C-methionine in normal pituitary tissue and in a small tumor embedded in the gland (i.e., with no inactive boundary, thereby reproducing the in vivo situation). In addition, an anatomical phantom, replicating key surrounding structures [based on computed tomography (CT) images from an actual patient], was created using material extrusion 3D printing with specialized filaments that approximated the attenuation properties of bone and soft tissue. Results The phantom enabled us to replicate pituitary glands harboring tumors of varying sizes (2, 4 and 6 mm diameters) and differing radioactive concentrations (2 ×, 5 × and 8 × the normal gland). The anatomical phantom successfully approximated the attenuation properties of surrounding bone and soft tissue. Two iterative reconstruction algorithms [ordered subset expectation maximization (OSEM); Bayesian penalized likelihood (BPL)] with a range of reconstruction parameters (e.g., 3, 5, 7 and 9 OSEM iterations with 24 subsets; BPL regularization parameter (β) from 50 to 1000) were tested. Images were analyzed quantitatively and qualitatively by eight expert readers. Quantitatively, signal was the highest using BPL with β = 50; noise was the lowest using BPL with β = 1000; contrast was the highest using BPL with β = 100. The qualitative review found that accuracy and confidence were the highest when using BPL with β = 400. Conclusions The development of a bespoke phantom has allowed the identification of optimal parameters for molecular pituitary imaging: BPL reconstruction with TOF, PSF correction and a β value of 400; in addition, for small (< 4 mm) tumors with low contrast (2:1 or 5:1), sensitivity may be improved using a β value of 100. Together, these findings should increase tumor detection and confidence in reporting scans.
Purpose: Phantoms are routinely used in molecular imaging to assess scanner performance. However, traditional phantoms with fillable shapes do not replicate human anatomy. 3D printed phantoms have overcome this by creating phantoms which replicate human anatomy which can be filled with radioactive material. The problem with these is that small objects suffer from boundary effects and therefore boundary-free objects are desirable. The purpose of this study was to explore the feasibility of creating resin-based 3D printed phantoms using 18 F-FDG. Methods: Radioactive resin was created using an emulsion of printer resin and 18 F-FDG. A series of test objects were printed including twenty identical cylinders, ten spheres with increasing diameters (2 mm to 20 mm) and a double helix. Radioactive concentration uniformity, printing accuracy and the amount of leaching were assessed. Results: Creating radioactive resin was simple and effective. The radioactivity remained bound to the resin for the duration that it was radioactive. The radioactive concentration was uniform among identical objects; the CoV of the mean, max and total signal were 3.6%, 3.8% and 2.6%, respectively. The printed cylinders and spheres were found to be within 4% of the model dimensions. A double helix was successfully printed as a test for the printer and appeared as expected on the PET scanner. The amount of radioactivity leached into the water was measurable (0.72%) but not visible above background on the imaging. Conclusions: Creating an 18F-FDG radioactive resin emulsion is a simple and effective way to create boundary-free, accurate, complex 3D phantoms that can be imaged using a PET/CT scanner. This technique could be used to print clinically realistic phantoms, however, they are single use, and cannot be made hollow without an exit hole. Also, there is a small amount of leaching of the radioactivity to take into consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.