The vestibular, cochlear and facial nerves have a common course in the internal auditory canal (IAC). In this study we investigated the average number of nerve fibres, the average cross-sectional areas of the nerves and nerve fibres, and the apparent connections between the facial, cochlear and vestibular nerve bundles within the IAC, using light and scanning electron microscopy. The anatomical localization of the nerves within the IAC was not straightforward. The general course showed that the nerves rotated anticlockwise in the right ear from the inner ear end towards the brainstem end and vice versa for the left ear. The average number of fibres forming vestibular, cochlear, and facial nerves was not constant during their courses within the IAC. The superior and the inferior vestibular nerves showed an increase in the number of nerve fibres from the inner ear end towards the brainstem end of the IAC, whereas the facial and the cochlear nerves showed a reduction in the number of fibres. This suggests that some of the superior and inferior vestibular nerve bundles may receive fibres from the facial and/or cochlear nerves. Scanning electron microscopic evaluations showed superior vestibular-facial and inferior vestibular-cochlear connections within the IAC, but no facial-cochlear connections were observed. Connections between the nerves of the IAC can explain the unexpected vestibular disturbances in facial paralysis or persistence of tinnitus after cochlear neurectomy in intractable tinnitus cases. The present study offers morphometric and scanning electron microscopic data on the fibre connections of the nerves of the IAC.
Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a 'canonical' circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6-1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex.
The carotico-clinoid foramen is the result of ossification either of the carotico-clinoid ligament or of a dural fold extending between the anterior and middle clinoid processes of the sphenoid bone. It is anatomically important due to its relations with the cavernous sinus and its content, sphenoid sinus and pituitary gland. In this study the ossification state of the carotico-clinoid ligament, the diameter of the internal carotid artery and the carotico-clinoid foramen has been studied on 50 autopsy cases. Of the 100 carotico-clinoid foramina examined, in 27 sides (15 right, 12 left) the carotico-clinoid ligament was completely ossified, in 18 sides (9 right, 9 left) the carotico-clinoid ligament was incompletely ossified and in 55 sides (26 right, 29 left) it was a ligamentous structure. The correlation of the dimensions of the carotico-clinoid foramen and the internal carotid artery showed no statistical significance, except between the carotico-clinoid foramen with a fibrous carotico-clinoid ligament and the internal carotid artery on the right side (p=0.007, r=0.51). The existence of a bony carotico-clinoid foramen may cause compression, tightening or stretching of the internal carotid artery. Further, removing the anterior clinoid process is an important step in regional surgery; the presence of a bony carotico-clinoid foramen may have high risk. Therefore, detailed knowledge of the type of ossification between the anterior and middle clinoid processes can be necessary to increase the success of regional surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.