Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.genomics | therapeutics | predictor
Tumors have been recently recognized as aberrant organs composed of a complex mixture of highly interactive cells that in addition to the cancer cell include stroma (fibroblasts, adipocytes, and myofibroblasts), inflammatory (innate and adaptive immune cells), and vascular cells (endothelial and mural cells). While initially cancer cells co-opt tissue-resident vessels, the tumor eventually recruits its own vascular supply. The process of tumor neovascularization proceeds through the combined output of inductive signals from the entire cellular constituency of the tumor. During the last two decades, the identification and mechanistic outcome of signaling pathways that mediate tumor angiogenesis have been elucidated. Interestingly, many of the genes and signaling pathways activated in tumor angiogenesis are identical to those operational during developmental vascular growth, but they lack feedback regulatory control and are highly affected by inflammatory cells and hypoxia. Consequently, tumor vessels are abnormal, fragile, and hyperpermeable. The lack of hierarchy and inconsistent investment of mural cells dampen the ability of the vessels to effectively perfuse the tumor, and the resulting hypoxia installs a vicious cycle that continuously perpetuates a state of vascular inefficiency. Pharmacological targeting of blood vessels, mainly through the VEGF signaling pathway, has proven effective in normalizing tumor vessels. This normalization improves perfusion and distribution of chemotherapeutic drugs with resulting tumor suppression and moderate increase in overall survival. However, resistance to antiangiogenic therapy occurs frequently and constitutes a critical barrier in the inhibition of tumor growth. A concrete understanding of the chief signaling pathways that stimulate vascular growth in tumors and their cross-talk will continue to be essential to further refine and effectively abort the angiogenic response in cancer.
Autocrine VEGF is necessary for endothelial survival, although the cellular mechanisms supporting this function are unknown. Here, we show that -even after full differentiation and maturation -continuous expression of VEGF by endothelial cells is needed to sustain vascular integrity and cellular viability. Depletion of VEGF from the endothelium results in mitochondria fragmentation and suppression of glucose metabolism, leading to increased autophagy that contributes to cell death. Gene-expression profiling showed that endothelial VEGF contributes to the regulation of cell cycle and mitochondrial gene clusters, as well as several -but not all -targets of the transcription factor FOXO1. Indeed, VEGF-deficient endothelium in vitro and in vivo showed increased levels of FOXO1 protein in the nucleus and cytoplasm. Silencing of FOXO1 in VEGF-depleted cells reversed expression profiles of several of the gene clusters that were de-regulated in VEGF knockdown, and rescued both cell death and autophagy phenotypes. Our data suggest that endothelial VEGF maintains vascular homeostasis through regulation of FOXO1 levels, thereby ensuring physiological metabolism and endothelial cell survival.
Although vascular complications are a hallmark of diabetes, the molecular mechanisms that underlie endothelial dysfunction are unclear. We showed that reactive oxygen species generated from hyperglycemia promoted ligand-independent phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2). This VEGFR2 signaling occurred within the Golgi compartment and resulted in progressively decreased availability of VEGFR2 at the cell surface. Consequently, the responses of endothelial cells to exogenous VEGF in a mouse model of diabetes were impaired because of a specific deficiency of VEGFR2 at the cell surface, despite a lack of change in transcript abundance. Hyperglycemia-induced phosphorylation of VEGFR2 did not require intrinsic receptor kinase activity, and was instead mediated by Src family kinases. The reduced cell surface abundance of VEGFR2 in diabetic mice was reversed by treatment with the antioxidant N-acetyl-L-cysteine, suggesting a causative role for oxidative stress. These findings uncover a mode of ligand-independent VEGFR2 signaling that can progressively lead to continuously muted responses to exogenous VEGF and limit angiogenic events.
Objective Perivascular cells, including pericytes, macrophages, smooth muscle cells and other specialized cell types, like podocytes, participate in various aspects of vascular function. However, aside from the well-established roles of smooth muscle cells and pericytes, the contributions of other vascular-associated cells are poorly understood. Our goal was to ascertain the function of perivascular macrophages in adult tissues under non-pathological conditions. Approach and Results We combined confocal microscopy, in vivo cell depletion and in vitro assays to investigate the contribution of perivascular macrophages to vascular function. We found that resident perivascular macrophages are associated with capillaries at a frequency similar to that of pericytes. Macrophage depletion using either clodronate liposomes or antibodies unexpectedly resulted in hyperpermeability. This effect could be rescued when M2-like macrophages, but not M1-like macrophages or dendritic cells, were reconstituted in vivo, suggesting subtype-specific roles for macrophages in the regulation of vascular permeability. Furthermore, we found that permeability-promoting agents elicit motility and eventual dissociation of macrophages from the vasculature. Finally, in vitro assays showed that M2-like macrophages attenuate the phosphorylation of VE-cadherin upon exposure to permeability-promoting agents. Conclusions This study points to a direct contribution of macrophages to vessel barrier integrity and provides evidence that heterotypic cell interactions with the endothelium, in addition to those of pericytes, control vascular permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.