Vanadium disulfide−black phosphorus (VS 2 −BP) hybrids were synthesized by a one-pot hydrothermal-assisted method to achieve enhanced electrochemical activity for supercapacitor applications. The concentration of BP was optimized to prevent the restacking nature of VS 2 and to enrich the active edges for electrolytic ion intercalation. The charge storage kinetics of the best-performing VS 2 −BP as an active electrode has demonstrated the dominance of the pseudocapacitive nature of the material. Furthermore, by sandwiching with a PVA/K 2 SO 4 gel electrolyte, an all-solid-state (ASS) vanadium disulfide−black phosphorus-50 mg (VS 2 −BP-50) symmetric device was developed on highly conductive carbon paper. The ASS VS 2 −BP-50 symmetric device displays the highest specific areal capacitance of 203.25 mF/cm 2 and exhibits the maximum areal energy density of 28.22 μW h cm −2 at an areal power density of 596.09 mW cm −2 , outperforming the previous literature. To understand the origin of the high quantum capacitance, we used density functional theory (DFT) and found that the charge accumulation region between VS 2 and BP monolayers and the charge transfer are the origin of the improved density of states in the VS 2 −BP hybrid. Moreover, exceptional mobility of K + ions and a higher diffusion rate were observed using the DFT method.
Recently, dielectric materials with high energy storage
capacity,
low loss, and good temperature stability are highly desired for the
rapidly growing field of power electronics. In the current work, we
have investigated the change in electrical, optical, and dielectric
properties by varying the concentration of compositional elements
Sn and Mn. We have prepared the Sn1–x
Mn
x
S (0.1, 0.3, 0.5, 0.7, and 0.9)
matrix by using the simple single-step hydrothermal method. The samples
show that the reflectance percentage increased with the increase of
the Mn amount in the composition. The samples exhibit narrow band
gap values, which further increase with the Mn content. The band gap
value increases from 0.43 to 0.56 eV. The structural analysis shows
that the prepared samples are polycrystalline in nature, having SnS
and MnS phases. Furthermore, the crystallite sizes increase with an
increase in Mn addition, whereas dislocation density and strain decrease
simultaneously. The refractive index is calculated from optical band
gap values by using the Dimitrov and Sakka equation. The morphological
study reveals the uniformity in size and shape of the prepared composition
throughout the sample. The presence of compositional elements Sn,
Mn, and S is confirmed by EDX analysis. The electrical study reveals
that the sample shows good electrical properties, which increase with
the Mn contents. The dielectric behavior as a function of frequency
and temperature was investigated, and the parameters like dielectric
constant, AC conductivity, impedance spectroscopy, and electric modulus
were deeply analyzed. All the above optical, electrical, and dielectric
properties of the SnMnS matrix have potential use in the field of
electronic and energy storage device applications.
The influence of 532 nm laser irradiation for different times on the optical changes of Ag10In15S15Se60 thin films. The irradiation influenced the structural, linear and the nonlinear optical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.