Systematic reviews of scientific literature are important for mapping the existing state of research and highlighting further growth channels in a field of study, but systematic reviews are inherently tedious, time consuming, and manual in nature. In recent years, keyword co-occurrence networks (KCNs) are exploited for knowledge mapping. In a KCN, each keyword is represented as a node and each co-occurrence of a pair of words is represented as a link. The number of times that a pair of words co-occurs in multiple articles constitutes the weight of the link connecting the pair. The network constructed in this manner represents cumulative knowledge of a domain and helps to uncover meaningful knowledge components and insights based on the patterns and strength of links between keywords that appear in the literature. In this work, we propose a KCN-based approach that can be implemented prior to undertaking a systematic review to guide and accelerate the review process. The novelty of this method lies in the new metrics used for statistical analysis of a KCN that differ from those typically used for KCN analysis. The approach is demonstrated through its application to nano-related Environmental, Health, and Safety (EHS) risk literature. The KCN approach identified the knowledge components, knowledge structure, and research trends that match with those discovered through a traditional systematic review of the nanoEHS field. Because KCN-based analyses can be conducted more quickly to explore a vast amount of literature, this method can provide a knowledge map and insights prior to undertaking a rigorous traditional systematic review. This two-step approach can significantly reduce the effort and time required for a traditional systematic literature review. The proposed KCN-based pre-systematic review method is universal. It can be applied to any scientific field of study to prepare a knowledge map.
Recent advances in manufacturing technology, such as cyber–physical systems, industrial Internet, AI (Artificial Intelligence), and machine learning have driven the evolution of manufacturing architectures into integrated networks of automation devices, services, and enterprises. One of the resulting challenges of this evolution is the increased need for interoperability at different levels of the manufacturing ecosystem. The scope ranges from shop–floor software, devices, and control systems to Internet-based cloud-platforms, providing various services on-demand. Successful implementation of interoperability in smart manufacturing would, thus, result in effective communication and error-prone data-exchange between machines, sensors, actuators, users, systems, and platforms. A significant challenge to this is the architecture and the platforms that are used by machines and software packages. A better understanding of the subject can be achieved by studying industry-specific communication protocols and their respective logical semantics. A review of research conducted in this area is provided in this article to gain perspective on the various dimensions and types of interoperability. This article provides a multi-faceted approach to the research area of interoperability by reviewing key concepts and existing research efforts in the domain, as well as by discussing challenges and solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.