Recent advances in manufacturing technology, such as cyber–physical systems, industrial Internet, AI (Artificial Intelligence), and machine learning have driven the evolution of manufacturing architectures into integrated networks of automation devices, services, and enterprises. One of the resulting challenges of this evolution is the increased need for interoperability at different levels of the manufacturing ecosystem. The scope ranges from shop–floor software, devices, and control systems to Internet-based cloud-platforms, providing various services on-demand. Successful implementation of interoperability in smart manufacturing would, thus, result in effective communication and error-prone data-exchange between machines, sensors, actuators, users, systems, and platforms. A significant challenge to this is the architecture and the platforms that are used by machines and software packages. A better understanding of the subject can be achieved by studying industry-specific communication protocols and their respective logical semantics. A review of research conducted in this area is provided in this article to gain perspective on the various dimensions and types of interoperability. This article provides a multi-faceted approach to the research area of interoperability by reviewing key concepts and existing research efforts in the domain, as well as by discussing challenges and solutions.
Background Type 1 diabetes mellitus (T1DM) is characterized by chronic insulin deficiency and consequent hyperglycemia. Patients with T1DM require long-term exogenous insulin therapy to regulate blood glucose levels and prevent the long-term complications of the disease. Currently, there are no effective algorithms that consider the unique characteristics of T1DM patients to automatically recommend personalized insulin dosage levels. Objective The objective of this study was to develop and validate a general reinforcement learning (RL) framework for the personalized treatment of T1DM using clinical data. Methods This research presents a model-free data-driven RL algorithm, namely Q-learning, that recommends insulin doses to regulate the blood glucose level of a T1DM patient, considering his or her state defined by glycated hemoglobin (HbA1c) levels, body mass index, engagement in physical activity, and alcohol usage. In this approach, the RL agent identifies the different states of the patient by exploring the patient’s responses when he or she is subjected to varying insulin doses. On the basis of the result of a treatment action at time step t, the RL agent receives a numeric reward, positive or negative. The reward is calculated as a function of the difference between the actual blood glucose level achieved in response to the insulin dose and the targeted HbA1c level. The RL agent was trained on 10 years of clinical data of patients treated at the Mass General Hospital. Results A total of 87 patients were included in the training set. The mean age of these patients was 53 years, 59% (51/87) were male, 86% (75/87) were white, and 47% (41/87) were married. The performance of the RL agent was evaluated on 60 test cases. RL agent–recommended insulin dosage interval includes the actual dose prescribed by the physician in 53 out of 60 cases (53/60, 88%). Conclusions This exploratory study demonstrates that an RL algorithm can be used to recommend personalized insulin doses to achieve adequate glycemic control in patients with T1DM. However, further investigation in a larger sample of patients is needed to confirm these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.