The reprogramming of differentiated cells to pluripotent cells (induced pluripotent stem (iPS) cells) is known to be an inefficient process. We recently reported that cells with short telomeres cannot be reprogrammed to iPS cells despite their normal proliferation rates, probably reflecting the existence of 'reprogramming barriers' that abort the reprogramming of cells with uncapped telomeres. Here we show that p53 (also known as Trp53 in mice and TP53 in humans) is critically involved in preventing the reprogramming of cells carrying various types of DNA damage, including short telomeres, DNA repair deficiencies, or exogenously inflicted DNA damage. Reprogramming in the presence of pre-existing, but tolerated, DNA damage is aborted by the activation of a DNA damage response and p53-dependent apoptosis. Abrogation of p53 allows efficient reprogramming in the face of DNA damage and the generation of iPS cells carrying persistent DNA damage and chromosomal aberrations. These observations indicate that during reprogramming cells increase their intolerance to different types of DNA damage and that p53 is critical in preventing the generation of human and mouse pluripotent cells from suboptimal parental cells.
The mechanisms involved in the reprogramming of differentiated cells into induced Pluripotent Stem (iPS) cells by Oct4, Klf4 and Sox2 (3F) remain poorly understood 1 . The Ink4/Arf tumour suppressor locus encodes three potent inhibitors of proliferation, namely p16 Ink4a , p15 Ink4b and Arf, which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals 2-4 . We show here that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated upon differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the 3F together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of stemness. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus implying that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive impact on the efficiency of iPS generation, increasing both the kinetics of reprogramming and the number of emerging iPS colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming through activation of p53 and p21; whereas, in human fibroblasts, INK4a is more important than ARF. Finally, organismal aging upregulates the Ink4/Arf locus 2,5 and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with an shRNA. All together, we conclude that the silencing of Ink4/Arf locus is rate limiting for reprogramming, and its transient inhibition may significantly improve the generation of iPS.The Ink4/Arf tumour suppressor locus encodes three important tumour suppressors that activate two critical anti-proliferative pathways, namely, the Rb and p53 pathways, whose activation prevents the propagation of aberrant cells, either by apoptosis or senescence (see scheme in Supplementary Fig. S1) 4 . Briefly, the paralogs p16 Ink4a and p15 Ink4b bind and inhibit the cyclin D-dependent kinases Cdk4 and Cdk6, which in turn are important to relieve the cell-cycle inhibitory activity of the Rb tumour suppressor. On the other hand, Arf
We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2-/- mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.
Cdk4 and Cdk6 are thought to be essential for initiation of the cell cycle in response to mitogenic stimuli. Previous studies have shown that Cdk4 is dispensable for proliferation in most cell types, an observation attributed to a putative compensatory role by Cdk6. Cdk6-null mice are viable and develop normally although hematopoiesis is slightly impaired. Embryos defective for Cdk4 and Cdk6 die during the late stages of embryonic development due to severe anemia. However, these embryos display normal organogenesis and most cell types proliferate normally. In vitro, embryonic fibroblasts lacking Cdk4 and Cdk6 proliferate and become immortal upon serial passage. Moreover, quiescent Cdk4/Cdk6-null cells respond to serum stimulation and enter S phase with normal kinetics although with lower efficiency. These results indicate that D-type cyclin-dependent kinases are not essential for cell cycle entry and suggest the existence of alternative mechanisms to initiate cell proliferation upon mitogenic stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.