During the past 35 years, survival rates for children with extracranial malignant germ cell tumors (GCTs) have increased significantly. Success has been achieved primarily through the application of platinum-based chemotherapy regimens; however, clinical challenges in GCTs remain. Excellent outcomes are not distributed uniformly across the heterogeneous distribution of age, histologic features, and primary tumor site. Despite good outcomes overall, the likelihood of a cure for certain sites and histologic conditions is less than 50%. In addition, there are considerable long-term treatment-related effects for survivors. Even modest cisplatin dosing can cause significant long-term morbidities. A particular challenge in designing new therapies for GCT is that a variety of specialists use different risk stratifications, staging systems, and treatment approaches for three distinct age groups (childhood, adolescence, and young adulthood). Traditionally, pediatric cancer patients younger than 15 years have been treated by pediatric oncologists in collaboration with their surgical specialty colleagues. Adolescents and young adults with GCTs often are treated by medical oncologists, urologists, or gynecologic oncologists. The therapeutic dilemma for all is how to best define disease risk so that therapy and toxicity can be appropriately reduced for some patients and intensified for others. Further clinical and biologic insights can only be achieved through collaborations that do not set limitations by age, sex, and primary tumor site. Therefore, international collaborations, spanning different cooperative groups and disciplines, have been developed to address these challenges.
We recently reported a mouse model of chronic electronic cigarette (e-cig) exposure-induced cardiovascular pathology, where long-term exposure to e-cig vape (ECV) induces cardiac abnormalities, impairment of endothelial function, and systemic hypertension. Here, we delineate the underlying mechanisms of ECV-induced vascular endothelial dysfunction (VED), a central trigger of cardiovascular disease. C57/BL6 male mice were exposed to ECV generated from e-cig liquid containing 0, 6, or 24 mg/ml nicotine for 16 and 60 weeks. Time-dependent elevation in blood pressure and systemic vascular resistance were observed, along with an impairment of acetylcholine-induced aortic relaxation in ECV-exposed mice, compared to air-exposed control. Decreased intravascular nitric oxide (NO) levels and increased superoxide generation with elevated 3-nitrotyrosine levels in the aorta of ECV-exposed mice were observed, indicating that ECV-induced superoxide reacts with NO to generate cytotoxic peroxynitrite. Exposure increased NADPH oxidase expression, supporting its role in ECV-induced superoxide generation. Downregulation of endothelial nitric oxide synthase (eNOS) expression and Akt-dependent eNOS phosphorylation occurred in the aorta of ECV-exposed mice, indicating that exposure inhibited de novo NO synthesis. Following ECV exposure, the critical NOS cofactor tetrahydrobiopterin was decreased, with a concomitant loss of its salvage enzyme, dihydrofolate reductase. NADPH oxidase and NOS inhibitors abrogated ECV-induced superoxide generation in the aorta of ECV exposed mice. Together, our data demonstrate that ECV exposure activates NADPH oxidase and uncouples eNOS, causing a vicious cycle of superoxide generation and vascular oxidant stress that triggers VED and hypertension with predisposition to other cardiovascular disease.
Doxorubicin (DOX) has limited efficacy in colorectal cancer due to multi-drug resistance. Resveratrol (RES) and didox (DID) are polyhydroxyphenols with potential chemosensitizing effects. Herein, we assessed the chemomodulatory effects of RES and DID to DOX in colorectal cancer cells. Equitoxic combination of DOX with RES and DID in HCT 116 reduced the IC50 of DOX from 0.96 ± 0.02 μM to 0.52 ± 0.05 μM and 0.4 ± 0.06 μM, respectively. Similarly, combination of DOX with RES and DID in HT-29 decreased the IC50’s of DOX from 0.88 ± 0.03 μM to 0.47 ± 0.02 μM and 0.29 ± 0.04 μM, respectively. The expressions of p53 and Bax genes were markedly elevated in HCT 116 cells after exposure to DOX/DID. In HT-29 cells, the expression of Bcl-XL gene was significantly decreased after exposure to DOX/DID. In addition, combination of DOX with RES significantly increased the expression of Bax gene in HCT 116 cells. RES treatment induced significant S-phase arrest in DOX-treated HCT 116 cells, while DID induced G2/M- and S-phase arrest in HCT 116 and HT-29, respectively. Both RES and DID significantly enhanced the intracellular entrapment of DOX due to blocking the efflux activity of p-glycoprotein pump. In conclusion, RES and DID sensitize colorectal cancer cells to DOX via facilitating apoptosis and enhancing intracellular entrapment of DOX.
Cardamonin has a protective effect against acetic acid-induced colitis. This effect may be due to reducing inflammation, oxidative stress and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.