Developments in femtosecond laser induced breakdown spectroscopy (fs-LIBS) applications during the last two decades have further centered on innovative métier tie-in to the advantageous properties of femtosecond laser ablation (fs-LA) introduced into LIBS. Yet, for industrially-oriented application like coal analysis, no research has exposed to view the analytical capabilities of fs-LA in enhancing the physical processes of coal ablation and the impact into quantitative correlation of spectra and data modeling. In a huge coal market, fast and accurate analysis of coal property is eminently important for coal pricing, combustion optimization, and pollution reduction. Moreover, there is a thirst need of precision standardization for coal analyzers in use. In this letter, the analytical performance of a one-box femtosecond laser system is evaluated relative to an industrially applied coal analyzer based on five objectives/measures: spectral correlation, relative sensitivity factors, craters topology, plasma parameters, and repeatability. Despite high-threshold operation parameters of the fs system, competitive results are achieved compared to the optimized analytical conditions of the ns-coal analyzer. Studies targeting the in-field optimization of fs-LIBS systems for coal analysis can potentially provide insights into fs-plasma hydrodynamics under harsh conditions, instrumental customization, and pave the way for a competitive next-generation of coal analyzers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.