It has been proven that model predictive control (MPC) is an efficient method for closed-loop insulin delivery in clinical studies. This paper aims to design an observer-based fractional-order nonlinear MPC for type 1 diabetes mellitus (T1DM) patients. It is assumed that the proposed model is nonlinear and contains parametric uncertainty. To estimate unknown states, optimal non-fragile H∞ observer is designed for Lipschitz nonlinear fractional-order systems including parametric uncertainty and the existence of input disturbance. The min–max optimization-based robust fractional model predictive control (RFMPC) has been presented in the following for insulin delivery. Since sensor noise of continuous monitoring of interstitial glucose concentration is considered non-Gaussian, the performance of the proposed controller is improved under non-Gaussian measurement noise by selecting a proper cost function based on generalized correntropy, and as a contrast, the performance of the mean square error (MSE)-based controller is simulated. According to the results, not only is the performance of the proposed controller better under non-Gaussian situations but also effectively reaches the set point in the case of disturbance and uncertainty and provides higher control accuracy and robustness compared with the MSE-based MPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.