The application of drones has recently revolutionised the mapping of wetlands due to their high spatial resolution and the flexibility in capturing images. In this study, the drone imagery was used to map key vegetation communities in an Irish wetland, Clara Bog, for the spring season. The mapping, carried out through image segmentation or semantic segmentation, was performed using machine learning (ML) and deep learning (DL) algorithms. With the aim of identifying the most appropriate, cost-efficient, and accurate segmentation method, multiple ML classifiers and DL models were compared. Random forest (RF) was identified as the best pixel-based ML classifier, which provided good accuracy (≈85%) when used in conjunction graph cut algorithm for image segmentation. Amongst the DL networks, a convolutional neural network (CNN) architecture in a transfer learning framework was utilised. A combination of ResNet50 and SegNet architecture gave the best semantic segmentation results (≈90%). The high accuracy of DL networks was accompanied with significantly larger labelled training dataset, computation time and hardware requirements compared to ML classifiers with slightly lower accuracy. For specific applications such as wetland mapping where networks are required to be trained for each different site, topography, season, and other atmospheric conditions, ML classifiers proved to be a more pragmatic choice.
Abstract. Conventional methods of monitoring wetlands and detecting changes over time can be time-consuming and costly. Inaccessibility and remoteness of many wetlands is also a limiting factor. Hence, there is a growing recognition of remote sensing techniques as a viable and cost-effective alternative to field-based ecosystem monitoring. Wetlands encompass a diverse array of habitats, for example, fens, bogs, marshes, and swamps. In this study, we concentrate on a natural wetland – Clara Bog, Co. Offaly, a raised bog situated in the Irish midlands. The aim of the study is to identify and monitor the environmental conditions of the bog using remote sensing techniques. Environmental conditions in this study refer to the vegetation composition of the bog and whether it is in an intact (peat-forming) or degraded state. It can be described using vegetation, the presence of water (soil moisture) and topography. Vegetation indices (VIs) derived from satellite data have been widely used to assess variations in properties of vegetation. This study uses mid-resolution data from Sentinel-2 MSI, Landsat 8 OLI for VI analysis. An initial study to delineate the boundary of the bog using the combination of edge detection and segmentation techniques namely, entropy filtering, canny edge detection, and graph-cut segmentation is performed. Once the bog boundary is defined, spectra of the delineated area are studied. VIs like NDVI, ARVI, SAVI, NDWI, derived using Sentinel-2 MSI and Landsat 8 OLI are analysed. A digital elevation model (DEM) was also used for better classification. All of these characteristics (features) serve as a basis for classifying the bog into broad vegetation communities (termed ecotopes) that indicate the quality of raised bog habitat. This analysis is validated using field derived ecotopes. The results show that, by using spectral information and vegetation index clustering, an additional linkage can be established between spectral RS signatures and wetland ecotopes. Hence, the benefit of the study is in understanding ecosystem (bog) environmental conditions and in defining appropriate metrics by which changes in the conditions can be monitored.
Peatlands store up to 2320 Mt of carbon (C) on only ~20% of the land area in Ireland; however, approximately 90% of this area has been drained and is emitting up to 10 Mt C per year. Gross primary productivity (GPP) is a one of the key components of the peatland carbon cycle, and detailed knowledge of the spatial and temporal extent of GPP under changing management practices is imperative to improve our predictions of peatland ecology and biogeochemistry. This research assesses the relationship between remote sensing and ground-based estimates of GPP for a near-natural peatland in Ireland using eddy covariance (EC) techniques and high-resolution Sen-tinel 2A satellite imagery. Hybrid models were developed using multiple linear regression along with six widely used conventional indices and a light use efficiency model. Estimates of GPP using NDVI, EVI, and NDWI2 hybrid models performed well using literature-based light use efficiency parameters and showed a significant correlation from 89 to 96% with EC-derived GPP. This study also reports additional site-specific light use efficiency parameters for dry and hydrologically normal years on the basis of light response curve methods (LRC). Overall, this research has demonstrated the potential of combining EC techniques with satellite-derived models to better understand and monitor key drivers and patterns of GPP for raised bog ecosystems under different climate scenarios and has also provided light use efficiency parameters values for dry and wetter conditions that can be used for the estimation of GPP using LUE models across various site and scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.