Performance of pilot-aided channel estimation techniques such as the Least Squares (LS) method depends on not only on the signal-to-noise ratio (SNR), channel conditions and pilot ratio, but also on the choice of interpolation method for deriving channel estimates at non-pilot subcarriers. This paper investigates the bit-error-rate (BER) performance of linear, spline and Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolation methods in LS channel estimation over the three extended ITU channel profiles defined for Long Term Evolution (LTE) testing. Simulation results show that applying the linear interpolation method produces the best BER performance over the fading channel with the smallest multipath delay spread. It is also shown that the choice of best interpolation method actually depends on the SNR in some of the fading channel profiles.
High computational complexity associated with maximum-likelihood (ML) data decoding in orthogonal frequency division multiplexing (OFDM) systems that use selected mapping (SLM) for the reducing peak-to-average power ratio (PAPR) can be significantly reduced using modified SLM and data decoding techniques presented in this Letter. Simulations show that the proposed method achieves similar PAPR reduction capability and data recovery performance compared with standard SLM (with perfect data recovery) and an ML detection scheme.
Transmission of system-critical control information plays a key role in efficient management of limited wireless network resources and successful reception of payload data information. This paper uses an orthogonal frequency division multiplexing (OFDM) architecture to investigate the detection performance of a time-domain approach used to detect deterministic control signalling information. It considers a type of control information chosen from a finite set of information, which is known at both transmitting and receiving wireless terminals. Unlike the maximum likelihood (ML) estimation method, which is often used, the time-domain detection technique requires no channel estimation and no pilots as it uses a form of time-domain correlation as the means of detection. Results show that when compared with the ML method, the time-domain approach improves detection performance even in the presence of synchronisation error caused by carrier frequency offset.
Selected mapping (SLM) is a well-known method for reducing peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. However, as a consequence of implementing SLM, OFDM receivers often require estimation of some side information (SI) in order to achieve successful data recovery. Existing SI estimation schemes have very high computational complexities that put additional constraints on limited resources and increase system complexity. To address this problem, an alternative SLM approach that facilitates estimation of SI in the form of phase detection is presented. Simulations show that this modified SLM approach produces similar PAPR reduction performance when compared to conventional SLM. With no amplifier distortion and in the presence of non-linear power amplifier distortion, the proposed SI estimation approach achieves similar data recovery performance as both standard SLM–OFDM (with perfect SI estimation) and also when SI estimation is implemented through the use of an existing frequency-domain correlation (FDC) decision metric. In addition, the proposed method significantly reduces computational complexity compared with the FDC scheme and an ML estimation scheme
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.