Asymmetric Split Ring Resonators are known to exhibit resonant modes where the optical electric field is strongest near the ends of the arms, thereby increasing the sensitivity of spectral techniques such as surface enhanced Raman scattering (SERS). By producing asymmetry in the structures, the two arms of the ring produce distinct plasmonic resonances related to their lengths - but are also affected by the presence of the other arm. This combination leads to a steepening of the slope of the reflection spectrum between the resonances that increases the sensitivity of the resonant behavior to the addition of different molecular species. We describe experimental results, supported by simulation, on the resonances of a series of circular split ring resonators with different gap and section lengths--at wavelengths in the mid-infra red regions of the spectrum--and their utilization for highly sensitive detection of organic compounds. We have used thin films of PMMA with different thicknesses, resulting in characteristic shifts from the original resonance. We also demonstrate matching of asymmetric split ring resonators to a molecular resonance of PMMA.
In this paper, we report on a substantial shift in the response of arrays of similarly sized Split Ring Resonators (SRRs), having a rectangular U-shaped form--and made respectively of aluminium and of gold. We also demonstrate that it is possible to obtain the polarization dependent LC peak in the visible spectrum--by using SRRs based on aluminium, rather than gold. The response of metallic SRRs scales linearly with size. At optical frequencies, metals stop behaving like nearly perfect conductors and begin displaying characteristically different behaviour, in accord with the Drude model. The response at higher frequencies, such as those in the visible and near infra-red, depends both on their size and on the individual properties of the metals used. A higher frequency limit has been observed in the polarization dependent response (in particular the LC resonance peak) of gold based SRRs in the near infrared region. By using aluminium based SRRs instead of gold, the higher frequency limit of the LC resonance can be further shifted into the visible spectrum.
Performance of pilot-aided channel estimation techniques such as the Least Squares (LS) method depends on not only on the signal-to-noise ratio (SNR), channel conditions and pilot ratio, but also on the choice of interpolation method for deriving channel estimates at non-pilot subcarriers. This paper investigates the bit-error-rate (BER) performance of linear, spline and Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolation methods in LS channel estimation over the three extended ITU channel profiles defined for Long Term Evolution (LTE) testing. Simulation results show that applying the linear interpolation method produces the best BER performance over the fading channel with the smallest multipath delay spread. It is also shown that the choice of best interpolation method actually depends on the SNR in some of the fading channel profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.