Personalized healthcare (PHC) is a booming sector in the health science domain wherein researchers from diverse technical backgrounds are focusing on the need for remote human health monitoring.
Piezoelectric Ultrasonic motors (USM) are based on the principle of converse piezoelectric effect i.e., vibrations occur when an electrical field is applied to piezoelectric materials. USMs have been studied several decades for their advantages over traditional electromagnetic motors. Despite having many advantages, they have several challenges too. Recently many researchers have started focusing on Industry 4.0 or Fourth Industrial revolution phase of the industry which mostly emphasis on digitization & interconnection of the entities throughout the life cycle of the product in an industrial network to get the best possible output. Industry 4.0 utilizes various advanced tools for carrying out the nexus between the entities & bringing up them on digital platform. The studies of the role of USMs in Industry 4.0 scenario has never been done till now & this article fills that gap by analyzing the piezoelectric ultrasonic motors in depth & breadth in the background of Industry 4.0. This article delivers the novel working principle, illustrates examples for effective utilization of USMs, so that it can buttress the growth of Industry 4.0 Era & on the other hand it also analyses the key Industry 4.0 enabling technologies to improve the performance of the USMs.
We have developed a proof of concept for a flexible sensor in harsh environmental conditions by using the inkjet printing technique. Printing a conductive pattern on a flexible substrate poses several challenges like surface energy mismatch, nonuniform ink deposition, and crack formation leading to poor conductivity. Further, there is a need for a flexible, oil and chemical-resistant encapsulant material to protect the sensor from harsh environments. We proposed a process to overcome these challenges and validated this process by measuring the actual and theoretical resistance values of the printed patterns on the flexible substrates that were found to be comparable. The printed patterns were encapsulated with fluoroelastomer, well-known for excellent oil and chemical resistance. We investigated the effect of a harsh environment on conductivity by submerging it in hydraulic oil at temperatures 80°C–180°C. Results revealed a negligible change in resistance. Thus, we devised a single process that can be used for printing conductive patterns on various flexible substrates like Polyethylene terephthalate, Polydimethylsiloxane, and Silicone rubber. Furthermore, the effectiveness of fluoroelastomer as an encapsulant for the harsh environment was investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.